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Abstract—Robots in real-world environments may need to
adapt context-specific behaviors learned in one environment to
new environments with new constraints. In many cases, copresent
humans can provide the robot with information, but it may not
be safe for them to provide hands-on demonstrations and there
may not be a dedicated supervisor to provide constant feedback.
In this work we present the SAIL (Simulation-Informed Active
In-the-Wild Learning) algorithm for learning new approaches
to manipulation skills starting from a single demonstration. In
this three-step algorithm, the robot simulates task execution to
choose new potential approaches; collects unsupervised data on
task execution in the target environment; and finally, chooses
informative actions to show to co-present humans and obtain
labels. Our approach enables a robot to learn new ways of
executing two different tasks by using success/failure labels
obtained from naı̈ve users in a public space, performing 496
manipulation actions and collecting 163 labels from users in the
wild over six 45-minute to 1-hour deployments. We show that
classifiers based low-level sensor data can be used to accurately
distinguish between successful and unsuccessful motions in a
multi-step task (p < 0.005), even when trained in the wild. We
also show that using the sensor data to choose which actions to
sample is more effective than choosing the least-sampled action.

Index Terms—in-the-wild human-robot interaction; robot
learning; learning from demonstration

I. INTRODUCTION

Co-present humans are a valuable resource for robots de-
ployed in the wild: they can teach the robot new skills,
provide feedback on existing skills, and help to ground models.
Research often imagines that a human teacher is consistently,
if not constantly, available to the robot for teaching. However,
robots belonging to an institution and deployed in public
spaces represent another major use case for robots in the wild.
This creates challenges when it comes to learning from hu-
mans, since they may receive neither hands-on demonstrations
(due to safety concerns) nor constant supervision (due to being
away from their supervisor). We develop an algorithmic step
after Learning from Demonstration (LfD), in which a robot
deployed in the wild with a small number of context-specific
skills can use feedback from co-present naı̈ve users to build
a more robust action model and self-supervise execution. Our
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Fig. 1. A robot deployed in a publicly accessible building atrium performs
in-the-wild label collection to learn new ways to complete manipulation skills.

algorithm, Simulation-informed Active In-the-wild Learning
(SAIL), enables a robot to learn manipulation skills without
direct demonstrations or constant supervision, in which the
robot uses a “seed” demonstration provided in-lab and uses a
combination of mental simulation and intermittent interaction
with co-present people in a public space to learn new valid
motion plans and a sensory model of success and failure.

Typically, learning algorithms such as reinforcment learn-
ing assume that a function mapping sensor/world states to
outcomes can be programmed into the robot in advance or
obtained from a teacher who is constantly monitoring robot
execution, and even in that case, learning is a relatively
slow process. Approaches such as policy shaping [1] integrate
human feedback to allow the agent to learn faster, but again
at the cost of requiring a teacher who can provide multiple
demonstrations or constantly monitor and provide feedback on
actions. A robot can use LfD to quickly learn new skills, but
requires either hands-on demonstrations or a robust mapping
from human motions to robot joint configurations, and can
only learn policies from sets of consistent demonstrations (for
example, always grasping an object in approximately the same
position). In addition, for a robot deployed in the real world, it
may be desirable to learn many alternative ways of executing a
task, each of which requires multiple demonstrations in an LfD
framework. In the wild, however, the robot is operating in an



environment of extreme data sparsity: executing trajectories on
the physical hardware is time consuming and risky, and even
given execution, feedback from a human is rarely available.

We propose a novel approach to addressing these challenges
using a 3-step algorithm, in which simulation and unsupervised
learning are used to reduce the space of possible trajectory
perturbations into a small number of high-information exam-
ples. These can be executed in the presence of naı̈ve users
in the wild to obtain labels, and build a robust model of
task execution without a priori knowledge of the execution
environment or dedicated supervision. The main contributions
of this work are an algorithm for learning a robust execution
graph and success model, and an analysis of end-user behavior
to provide insights into the frequency and quality of feedback
available from naı̈ve users in unconstrained environments. We
show that the simulation component is able to reduce the space
of potential executions by 75% to those which maximize the
change in action and minimize the change in final effect of
the behavior, with in-lab success rates of 391 successes to
21 failures and in-the-wild success rates of 95 successes to
68 failures. We also show that the sensor model accurately
models success versus failure with a statistically significant
difference, and that propagating information between different
perturbations of the same action step improves predictions,
even for actions without a ground truth label. Finally, we show
in a series of 6 45-minute to 1-hour deployments that naı̈ve
users are a source of useful information for the robot, with
users labeling 163 out of 496 (32.9%) manipulation actions
the robot performed in the wild.

II. RELATED WORK

Prior work in HRI has shown that users in public spaces are
willing to help a robot [2], although some of these users may
be more interested in exploring the robot’s capabilities than
interacting with it as intended [3]. Other work has examined
how to integrate human feedback into an agent’s learning pro-
cess. Some of this work has placed the human in the role of an
advisor (see [4] for a unifying framework describing possible
human roles), for example to block catastrophic failures [5] or
to provide preference information [6]. Other work has modeled
and tried to minimize a human supervisor’s “surprise” at an
agent’s actions [7]. Grollman and Billard [8] learn from failed
end-user demonstrations by learning to avoid that part of the
state space, while Nguyen et al. [9] examine how an agent
can learn a set of optimal plans to satisfy human preferences
in which there are trade-offs that are imprecisely specified. In
the extreme case, some work has examined how to learn in
the total absence of human feedback. For example, Levine et
al. [10] used several robots working in parallel and without
human feedback to train grasping controllers for a wide range
of objects. Independent of the human-robot interaction itself,
other work has addressed the general problem of modifying
learning algorithms to handle uncertainty, such as MDPs
[11]–[13]. However, much prior work has assumed that the
supervisor will provide some alternative action or policy [6],
[7], [14], which may not be possible in the wild, and all

of these approaches require large quantities of data, which
may not be available in the wild, or hand-specified reward
functions, which can be difficult to create. Our approach also
does not make any a priori assumptions about what constitutes
a valid policy, only that it is somehow “near” the original
demonstration. Thus our approach takes into account not only
the original demonstrator’s ideas about how the task might be
performed, but will also inherently adapt to any unexpected
features of the environment (for example, a more constrained
workspace), and any common preferences from the users in a
given space (for example, cultural norms).

Researchers have also addressed the problem of how to
learn task constraints. Bajcsy et al. [15] allow users to correct
demonstrations one dimension at a time through physical
corrections. Hayes and Scassellati [16] learn task constraints
through active learning with a human demonstrator. Cakmak
and Thomaz [17] use active learning to enable a robot to query
a human teacher about task constraints and goal features at
different points in a demonstration.

Other work has used simulations to augment or improve a
human demonstration. Večerı́k et al. [18] use demonstrations
collected on a real robot arm to guide exploration for a
simulated version of the same robot, and use prioritized expe-
rience replay to ensure that human demonstration actions are
given extra weight during exploration compared to simulated
actions. Ugur, Oztop, and Sahin [19] presented a framework
for learning object affordances in simulation based on an
initial demonstration and executing them on a real robot.
Their framework finds clusters of perceptual features to predict
affordances and their effects, resulting in a set of affordances
that can be integrated with sequential manipulation planning.

Another line of related work has examined how to separate
modeled human feedback from the action space. For example,
Christiano et al. [20] use a two-part model in which both the
agent’s policy and the mapping from states to rewards are
learned by deep networks. They capture human preference
by asking the human supervisor to compare between two
trajectories. Similarly, Knox and Stone [21] (see also [22])
use human ratings of agent performance to allow an agent
to learn directly from human feedback. Akgun and Thomaz
[23] simultaneously learn both actions and goals through
demonstrations from naı̈ve users, learning both from around
ten demonstrations per user. Actor-critic models [24], [25]
estimate both the value function (the critic) and search through
a parameterized space of policies (the actor). We use the same
idea as in these methods of separating the policy evaluation
from the policy exploration, however, rather than finding a
single optimal policy, the robot is focused on exploring the
space of valid policies, and maintains a noisy classifier of the
human evaluation of the behavior.

III. SAIL ALGORITHM

As described in Algorithm 1, the SAIL algorithm consists
of 3 steps to efficiently learn new ways of completing an
action given a single demonstration. After generating per-
turbed versions of the original demonstration, a simulation
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Fig. 2. Our robot uses a combination of simulation (Section III-B), sens-
ing (Section III-C), and spontaneous in-the-wild human interactions (Sec-
tion III-D) to learn and validate new ways to complete a manipulation task.

step identifies which demonstrations cause a large change in
the action space, but with only a small change in the outcome
of the behavior. The new candidate demonstrations are added
to an execution graph (see Fig. 2). The robot then engages in
unsupervised execution of the trajectories by traversing edges
in the execution graph while monitoring low-level sensor data.
As trajectories are executed, the algorithm predicts the success
or failure of each trajectory based on prior and current sensory
data and obtains labels from humans in the environment when
available, propagating the success/failure information to other
trajectories using the previously-collected unsupervised data.

A. Preliminaries

The algorithm takes as input a single demonstration, which
consists of a sequence of K keyframes. Each keyframe is
represented by an end effector pose, gripper status (open or
closed), and object m ∈ M defining the reference frame of
the keyframe. The object may be the base of the robot, or
any other object in the workspace that the robot is otherwise
aware of (such as those detected by a perception algorithm).
The demonstration is provided by an expert to provide a good
initial set of keyframes on which to base further exploration.

An “execution” of the demonstration consists of the robot
planning and moving to each of the poses in the reference
frame of the object. It produces a graph of keyframes, where
an edge in the graph connects two keyframes. To execute the
a skill, the robot follows a path through the graph, moving its
end effector to the position specified by each keyframe in the
path. While moving, the robot records from the sensors (e.g.,
the effort from one joint) and associates the data with the edge
between the two keyframes. The data from all edges in a given
step are combined, allowing the robot to infer whether an edge
corresponds to success or failure even if only unsupervised
executions of that edge have occurred.

We assume that a given skill has a fixed number of steps,
although the approach could be extended to include adding
or removing keyframes. We do not perturb a demonstrations’
first keyframe, since it provides a common starting point and
can represent a static out-of-the-way pose for perception. This

Algorithm 1 SAIL Algorithm
Given: Task list t1...num tasks, tuning parameter α
D ← COLLECTDEMONSTRATION()
for n = 0 to N do
D′n ← PERTURBDEMONSTRATION(D)
d′an

, d′en ← SIMULATE(D′n)
ψn = d′an

α+ (1− d′en)(1− α)
end for
execution graph← TOPψ(D′, 0.25)
node← STARTNODE(t0)
while true do
edge←

arg min(|PROB(fail, edge)− PROB(success, edge)|)
result, sensory features← EXECUTEEDGE(edge)
if result = error then
label← error

else if human present then
label← COLLECTFEEDBACK()

else
label← unknown

end if
UPDATEPROBS(task, edge, sensory features, label)
node← TRAVERSE(node, edge)
if node is terminal then
task ← NEXTTASK(task)
node← STARTNODE(task)

end if
end while

work is also restricted to skills where the effect of a skill is
encapsulated by the changing position of objects. Some tasks,
such as pushing a button, may not be defined in this way, and
require constructing an effect definition that captures other
signals. Finally, this approach (described in Section III-C)
makes the assumption that Gaussian distributions can be used
to model the sensor data.

B. Discovering New Keyframes using Simulation

Beginning with a skill demonstration collected from a
human expert, we perturb the demonstration to expand an
execution graph (see Fig. 2) that represents other possible ways
of completing the skill. Since we are seeking new ways of
completing the same task, rather than discovering entirely new
skills, we seek perturbations that use different actions (in our
case, using a demonstration in which one or more keyframes
may be different from the original demonstration) to achieve
the same end result.

For an initial K-keyframe demonstration, we randomly
select between 1 and K − 1 keyframes to perturb. The
selected keyframes are perturbed along one of their coordinate
frame basis vectors, chosen at random. We use the current
frame’s basis vectors (X, Y, and Z axes) as the directions
for perturbations because the coordinate frame’s orientation
holds important knowledge about the world. For example, in
our tasks, the Z-axis is coincident with gravity and the other



two axes are parallel to the table, making them interesting
directions for exploration. The keyframes are either rotated
about the basis vector by a random amount in the range
[−π/2, π/2], or translated a random amount along that vector
in the range [−0.2m, 0.2m].

We can generate any number of perturbations of the original
demonstration and perform them in simulation, but not all
of them will be good candidates to replay on the robot.
To evaluate how valuable a perturbed demonstration is for
further data collection, we introduce the value score metric,
ψ. Demonstrations with a high ψ represent a “different way”
of completing the same task as the original demonstration.

The value score is calculated as follows. For each perturbed
demonstration, we first use Eq. (1) to calculate the action
distance (da): how much the new set of perturbed keyframes
differ from those in the original demonstration, summed over
all K keyframes in the demonstration. In this equation, xk

is the robot end effector’s XYZ position at keyframe k with
respect to that keyframe’s coordinate frame. The coordinate
frame may be co-located with the robot base or one of the
objects in the scene, depending on the original demonstration.
θk is the smallest angle of rotation (in radians) between the
original and perturbed keyframe end effector poses.

da =

K∑
k=1

∥∥xkperturbed
− xkoriginal

∥∥2 +
θk
4

(1)

Similarly, the effect distance (de) for each demonstration,
given by Eq. (2), is how much the final positions of the M
objects in the scene differ from their final positions under the
original demonstration.

de =

M∑
m

∥∥xmperturbed
− xmoriginal

∥∥2 (2)

Because the action and effect distances depend on the task
and arm geometry, they will have varying magnitudes, so we
normalize them, defining d′a = da/maxn=1...N dan

and d′e =
de/maxn=1...N den . Finally, we calculate the value score ψ
for each perturbed demonstration according to Eq. (3).

ψn = d′an
α+ (1− d′en)(1− α) (3)

This equation assigns high value score to perturbed demon-
strations for which the action distance d′a is high and the effect
distance d′e is low. The parameter α ∈ [0, 1] is used to tune
the preference between maximizing the action distance and
minimizing effect distance. For example, α = 1 will assign
the highest value score to perturbations with the maximum
action distance, regardless of the effect.

Once ψ has been calculated for all perturbed demonstra-
tions, we select the top 25% highest-scoring demonstrations1

and add them to the execution graph for real-world evaluation
on the robot. Since some keyframes remain the same as the

1Using our perturbation method, the top 24.8% of perturbed demonstrations
account for 50% of the total variation in value score. This was calculated by
conducting 1000 perturbations, simulating them, and calculating their scores.

original demonstration, the manipulation graph will contain
branches representing the different perturbations.

C. Sensor Models of Action Completion

The sensor model allows the robot to self-supervise during
execution and to more accurately infer what perturbations
correspond with successful task execution. As discussed in
Section III-A, the sensor model is built during execution, and
is associated with a specific step of the task, incorporating
information from all edges corresponding to that step.

To control for different execution times for different pertur-
bations, time is normalized to the interval [0, 1] and the sensor
data resampled so that each segment contains the same number
of time points. At each time point for each feature, the sensor
model maintains a Gaussian distribution on the samples that
have been labeled as “success” and the samples that have been
labeled “failure”. The probability of a sample belonging to the
“success” or “failure” class (function PROB in Algorithm 1)
is the mean probability of the sensor data belonging to the
relevant classifier at each time for each feature. That is, if S
is the set of sensor data, t is the time point, st ∈ S is the
current level of the sensor data at time t, Φ is the cumulative
distribution function of the normal distribution, and µsuccess,t

and σsuccess,t are the mean and standard deviation of the
samples at time t labeled as success, then the probability that
a sample belongs to the “success” model is:

1

|S|
∑
s∈S

(
1

|t|
∑
t

Φ((st − µsuccess,t)/σsuccess,t)) (4)

The probability that a sample belongs to the “failure” model
is calculated in the same way; note that these probabilities need
not sum to one, since the probabilities are calculated indepen-
dently. For a maximally ambiguous sample, the probability of
belonging to “success” or “failure” are be equal, thus in a
minimally informative model, all samples are be ambiguous.
These probabilities can also be calculated for unlabeled data,
and used to determine which edges are most informative to
request a label for, as described in the next section. They
are updated in the function UPDATEPROBS in Algorithm 1.
The key insight of this work is that µsuccess,t and σsuccess,t
are calculated across all edges belonging to the same step of
the task, so that when a label is obtained for one edge, the
information is propagated to all edges. This allows the robot
to infer the success or failure of unlabeled edges, as long as
some edge in that step has been labeled.

D. In-The-Wild Labeling

The final step in the SAIL algorithm is to obtain labeled
samples from naı̈ve users in the environment. In the deploy-
ment environment, the robot collects unlabeled data when
no human is present (or when a co-present human fails to
label a segment), and collects labeled data when labels are
available. There are four possible labels: success, when a step
is completed correctly, failure, when a step is executed by
the robot but does not correctly progress the task, error, when



Fig. 3. Left: The simulated robot arm completes the pick and place task.
Right: a perturbed version of the same keyframe (rotated about the vertical
axis) being replayed on the real robot arm.

there is a problem with the robot’s motion plan, and unknown,
when a label was not provided for an execution. The labels
are associated with a specific set of sensor data from a single
pass through an edge; the sensor model combines data across
edges corresponding to the same step, allowing the robot to
infer whether edges with only unknown labels primarily result
in success or failure. We compare two approaches to choosing
a path through the execution graph when making queries to
humans in the wild: in the first approach, the robot greedily
chooses a path so that it minimizes the difference between
the probability of success and the probability of failure for
the segment, based on the average sensor model probabilities
associated with those labels for all previous executions of that
edge. In the second approach, the robot chooses the shortest
error-free path to the least-sampled edge in the graph.

IV. SYSTEM IMPLEMENTATION

We evaluated the system relative to two manipulation skills.
The first is a pick and place skill, where the robot picks
up a yellow block and places it in a red bowl. The second
skill is a pour skill, where the robot picks up the bowl by
its rim and dumps the block onto the table. These skills
are good candidates for our study because a) they involve
multiple steps, b) both translation and rotation of the robot’s
end effector are important, especially on the pour skill, and c)
successfully completing one skill puts the environment in the
starting state for the next skill, so the skills can be alternated
repeatedly without human intervention. The skills were created
by recording a kinesthetic demonstration (as in [26]), where
an expert user physically moved the robot’s gripper through
the steps of the skill and recorded keyframes along the way.

After generating perturbations as described in Section III-B,
We replayed each of the N = 40 generated perturbations in
the simulator and calculated their value score as described
in Section III. We set α = 0.3 for both skill in this study,
determined empirically based on our choice of tasks. The top
10 (25%) perturbations, capturing around 50% of the variation
in value score, are added to the execution graph (see Fig. 2).

Both evaluations were conducted using a custom mobile
manipulation robot, equipped with a Kinova Jaco 7 degree-of-
freedom arm, a Robotiq 85 2-finger gripper, and an articulated
neck joint. The platform also has an LED array in its head

which displays a simple face, as well as LED ear lights and
a speaker for speech using the Amazon Polly text-to-speech
engine. The robot collects sensory input using an Intel Re-
alSense D400 depth camera, MiniDSP directional microphone
array, and the arm’s built-in end-effector effort measurements.
To simulate perturbed versions of the actions, we created a
testbed using the Bullet simulator (Fig. 3). The models for
the manipulation objects were created using Blender and V-
HACD2, and were assigned mass of 0.1kg and friction of
µ1 = 1.0, µ2 = 0.001. The simulated arm and gripper
followed recorded keyframes using inverse kinematics (for the
arm) and simulated constraints (for the gripper linkage).

The low-level features used in this work were gripper state,
joint effort, sparse optical flow, audio energy in 5 frequency
bands, audio intensity, spectral flatness, and total motion. We
did not include the end effector position or object positions
because of noise in the tracking and motion planning, although
these might improve performance for some tasks. The sensor
data was resampled to contain 50 samples per feature in each
segment, normalizing over time. We added two features to
the planning framework to ensure that the tasks could be
successfully replayed without human intervention in a real-
world environment. By combining object-relative keyframes
with a perception system, the robot could continue to execute
skills as objects were moved around the workspace. The
perception system used the robot’s on-board depth camera and
point cloud processing algorithms to detect object positions
and colors. We also defined a “recovery motion” for the robot.
In the event of a planning failure, the robot moved to a
recovery pose, dropped what it was holding, and began again.

V. EVALUATION

We evaluated each step of the algorithm, using a com-
bination of expert labeling and in-the-wild testing. For the
in-lab evaluation, two execution graphs for each task were
fully labeled by an expert. To do this, the robot first built
up an unlabeled model of task execution by sampling the
least-sampled edges in the graph until every edge was either
traversed once or determined to be unreachable (reaching it
required traversing an edge that resulted in a motion planning
error), or until at least ten samples were obtained for every step
in the task. This unlabeled model was then used to bootstrap
two rounds of expert labeling, one using the information-
based sampling approach to sampling and one using the
coverage-based approach. In the coverage-based approach,
expert labeling continued until all edges reachable by an error-
free path were labeled, and in the information-based approach,
the expert provided labels until the model selected the same
set of keyframes three times in a row.

We evaluated the full system in the wild to show that
the robot is able to learn a useful model of success and
failure, as well as characterizing the frequency, duration, and
type of interactions that occur with users. To collect human
feedback, we placed a touch screen on the table in front of

2https://github.com/kmammou/v-hacd
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Fig. 4. 100 simulated perturbations of the block dropoff task, showing a
weak correlation between increasing action perturbation and the size of the
resulting effect (both normalized). The top 25% of samples (ranked by value
score, see Section III-B) are highlighted in blue/light.
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Fig. 5. Sensor model’s estimation of probabilities for labeled edges. The
majority of paths resulted in successful executions in the lab, resulting in
a noisier failure classifier in-lab. Although values are in [0,1] the total
probability does not sum to 1 because the classifiers are trained separately.

the robot. The screen displayed a green “success” button and
a red “failure” button (see Fig. 1). Person detection was not
a core contribution of this work so we used a human-in-the-
loop approach: an observer in a nearby study area labeled the
number of available interaction partners using a laptop.

The robot executed manipulation tasks in the atrium of a
publicly-available building between the hours of 10:00 and
18:00. The robot was placed behind a table, but was not ac-
companied by a human “handler” or any instructional material,
rather, all interactions were spontaneous, and initiated upon
interest from a passer-by. Whether or not it was interacting
with a human, the robot continuously selected manipulation
actions to perform using one of the two selection strategies
described above, alternating between the “pick” and “pour”
tasks as it completed tasks. If the robot motion planner
encountered an error or was unable to find a valid plan after
10 attempts, the robot returned its arm to a known joint pose
and selected a new set of keyframes. Data collection was
completed in 6 sessions, 3 for each of the two action selection
conditions (information-based and coverage-based).

When a passer-by approached, the robot elicited feedback

from them. After finishing its current manipulation action, the
robot asked for the participant’s help (“I’m learning how to use
this stuff. If you could help me out, that would be awesome”)
and provided instructions. Participants were instructed to press
the check mark button if the action “looked good” or “looked
right,” and otherwise to press the X button. The robot and
the participant then took turns acting and providing feedback,
respectively, until the participant chose to leave. Manipulation
actions were chosen according to the currently active selection
strategy, as described in Section III. During this time, the robot
spoke after each motion (“OK?” “And?”), when feedback was
supplied (“Great!”, “Oh no!”), at the end of a successful task
(“Yay!”), and if an error occurred (“I ran into an error, I’m
going to start again from the beginning”). Collecting labels in
this manner means that every keyframe executed resulted in
one labeled data point for that edge in the execution graph.
The label was either “success”, “failure”, “unknown” (motion
planning succeeded, but no human feedback was available),
or “error” (motion planning failure).

VI. RESULTS

Fig. 4 illustrates the resulting behavior when a keyframe
demonstration is perturbed 100 times in our simulator. The
data, while noisy, points to a moderate correlation (Spearman’s
ρ = 0.44, p = 3.4× 10−6) between the size of an action
perturbation and the resulting change in effect. Measuring
perturbations via simulation using our approach is subject to
large uncertainty, but is still more informative than making
every possible random perturbation and trying them all on the
robot. This confirms our choice of the simulator as a good
first step for our filtering process, and the filtering is further
improved by the use of the value score.

Fig. 5 shows the accuracy of the sensor model in repre-
senting success versus failure of edges in the execution graph.
For expert labeling, the average probability of a sensor sample
that was labeled “success” belonging to the success classifier
(true positive) was 0.488 (SD = 0.041), while the probability
a sensor sample labeled “success” belonging to the failure
classifier (false negative) was 0.00184 (SD = 0.014). This
was a significant difference (t(104) = 116.9, p < .0001;
paired t-test). There was also a significant difference between
the probability of a “failure” sample belonging to the failure
distribution (true negative; M = 0.676, SD = 0.32) and the
probability of the sample belonging to the success distribution
(false positive; M = 0.254, SD = 0.19; t(20) = 4.65, p <
0.0005; paired t-test). This difference also held in the sensor
data collected in the wild, with the probability of a sensor
sample labeled “success” belonging to the success distribution
(M = 0.506, SD = 0.19) significantly higher than the proba-
bility of that sensor sample belonging to the failure distribution
(M = 0.0456, SD = 0.11; t(64) = 20.34, p < .0001; paired
t-test). Similarly, the probability of a sensor sampled labeled
as “failure” in the wild belonging to the failure distribution
(M = 0.587, SD = 0.25) was higher than the probability of
it belonging to the success distribution(M = 0.00713, SD =
0.045; t(52) = 14.02, p < 0.0001; paired t-test).



Fig. 6 shows how the difference between the success
probability and failure probability, as calculated in Equation
4, evolves as new labels are added to the model. This measure
varies from -1 (very certain to be failure) to 1 (very certain to
be success). By plotting this value for edges with different
ground truth labels, we can show that for edges that are
known to result in successful execution, this value evolves
towards 1.0, for edges that are known to result in failure this
value evolves towards -1.0, and for edges that are ambiguous
(may result in success or failure), the value stays close to
0. When this value more quickly goes towards 1 or -1, then
the system is learning faster; thus Figure 6 also shows that
using the information-based approach to collect labels allows
the robot to more quickly distinguish between successful and
failed executions.

Of the 496 manipulation actions the robot performed in the
wild, 163 of them (32.9%) were labeled by human participants.
For the picking task, naı̈ve users labeled 45 successes and 28
failures, while 133 actions were unlabeled and 50 resulted in
an error condition (typically a planning failure). The expert
labeled 185 successes and 4 failures in the same task, with 15
errors. For the pouring task, naı̈ve users labeled 50 successes
and 40 failures, with 200 unlabeled actions and 25 errors. The
expert user labeled 206 successes and 17 errors in the pouring
task, with 27 errors. On average, one label was provided
for every 120 seconds the robot was operating in the wild.
Other than the labeling of the number of available interaction
partners, the robot operated with minimal intervention from the
experimenters, with interventions needed every 32 minutes on
average (10 total). In seven of those cases, the experimenter
needed to reset objects that were pushed/poured out of reach
or off the table; in one case the objects ended up too close
together for the perception pipeline to detect them; in one case
the robot tipped the bowl sideways, making both detection and
grasping impossible, and in the last case, a participant walking
away without giving feedback froze the control code.

The learning pipeline was evaluated in the wild in 2 one-
hour pilot sessions and four 45-minute experimental sessions.
The pilot sessions were identical to the main experiment
sessions except that the robot chose its path through the
execution graph randomly if no human was present at the
beginning of the task and asked the user to wait if they
approached the robot while it was executing a demonstration.
In these pilot sessions, it was found that the majority of
people left after 1-2 keyframes (20-25% of a demonstration).
This behavior can be observed in Fig. 7. The algorithm was
then changed to always choose an informative (or coverage-
increasing) path and ask for a label whenever a person was
present to take maximal advantage of the small amount of
human feedback available. In the experimental sessions, most
people still stayed for only a few keyframes, but the robot was
able to take advantage of the labels they provided. The results
in Figure 5 include all six sessions.

We consider “robustness” to be based on the number of
new valid execution strategies found. For the first perturbation
of the pick task, the algorithm initially added 36 edges to

(a) Pickup Task Perturbation 1

(b) Pickup Task Perturbation 2

(c) Pouring Task Perturbation 1

(d) Pouring Task Perturbation 2

Fig. 6. The mean difference between success and failure probabilities of all
edges belonging to a step, for edges with ground truth labels of successful
(purple/dark), unknown (blue/medium; equal numbers of expert labels of
success and failure), and failure (green/light). That the majority of paths
returned by the simulator resulted in successful executions in the lab. Change
over time for the information-based approach is shown in solid line, while
the coverage-based approach is shown with a dashed line. Vertical axis is the
difference in probabilities; horizontal axis is the number of labels obtained
for any edge in that step.

the original 5-edge graph, 30 of which had equal or more
success than failure in the expert labeling, resulting in 49
possible paths through the graph, or 49 different ways of
executing the task. For the second perturbation, the algorithm
added 29 edges, of which 23 were successful, resulting in
36 ways to execute the task. For the first perturbation of the
pour task, the algorithm initially added 56 edges, of which
50 were successful, resulting in 70 possible executions, and
for the second perturbation, which had the lowest success
rate, the algorithm initially added 57 edges, of which 26
were successful, resulting in 27 ways of executing the task.
Given that in the initial demonstration, the robot only had
one possible way to execute the task, these numbers represent



Fig. 7. The labels collected and number of participants during one of the in-the-wild sessions in our study (session 4, coverage edge selection method).

a considerable improvement in the options the robot has to
choose from for executing the task: that is, if one approach is
blocked for some reason, the robot retains many more options
than it initially had for executing the task.

VII. DISCUSSION AND CONCLUSION

Our work shows that a keyframe demonstration can be suc-
cessfully modified by using simulated perturbation followed
by real-world evaluation, even with naı̈ve users. The SAIL
algorithm uses three steps to identify the most promising
alternate versions of the demonstration using unsupervised
techniques, infer the success or failure of unlabeled executions
from a small set of labeled executions, and validate this
prediction using explicit feedback from human-robot interac-
tion. The simulator is able to significantly reduce the space
of perturbations to test, and the majority of the resulting
perturbations resulted in successful execution, especially in
the lab environment. Furthermore, low-level sensor data can
be used to distinguish between successful and failed executions
(Fig. 5) and that propagating the information across different
ways of executing a task step can help the robot to choose
informative behaviors to ask about (Fig. 6), although when
many labels are available, it may be better to fall back to
asking about every edge. Ultimately, in this work the human
is an important part of the learning process, where the robot
makes efficient use of feedback by only asking about actions
that have already been vetted by previous steps.

Qualitatively, we observed that the perturbations produced
by the simulation algorithm varied, from rotations in the end-
effector position when dropping the block in the box, to one
variation in the pour task where the robot pushes the bowl to
one side and then picks it up from the opposite lip from the
grasp pose in the original demonstration. We observed many
participants filming the robot or taking pictures, and approach-
ing the robot in groups. However, many more people walked
by the robot without stopping, briefly glanced at the robot, or
stopped for only a few seconds. Participants sometimes picked
up and moved the objects on the table, placing them where the
robot could not reach them or attempting to put them in the
robot’s gripper. In addition, we observed that participants often
continued to provide feedback until the robot either failed a
step (as determined by the participant) or encountered a motion
planning error, after which some or all of the participants left.

This work represents a step towards the goal of an always-on
mobile manipulator learning from naı̈ve users in the wild. Al-

though each component of this model could be improved (e.g.,
incorporating task-specific information to generate nonrandom
perturbations), we have shown that this multi-step approach
can be used to efficiently learn new task execution approaches.
We show that there is a strong separation between the low-
level sensor data for “success” and “failure”, suggesting that
other machine learning techniques can also be expected to
generate accurate classifiers. However, note that although the
Gaussian approach used in this work requires strong assump-
tions of normality, it is less sensitive to the so-called “curse of
dimensionality” than some other approaches; we qualitatively
observed that many of the features were uninformative, but
that lack of information is captured in the noise model and
ignored by the system. Relaxing the normality assumption or
allowing multimodal distributions could improve performance
but would require more samples.

Future work could address how to integrate more informa-
tion between steps, for example, using execution monitoring
to improve the fidelity of the simulator. Other work might
study how to more tightly integrate this approach with other
learning algorithms. Another direction is to more effectively
engage passers-by in the interaction, especially those who look
at the robot and are interested, but only pause briefly without
stopping. The current approach is sensitive to the quality
of the initial demonstration; this work could be extended
by learning an initial demonstration from multiple examples,
after which the SAIL algorithm could be used. Our approach
assumes that the initial demonstration includes information
about the coordinate frame in which the action is taken
(that is, when reaching for the block, that the action is in
the blocks coordinate frame). In practice, this information is
easily provided by the demonstrator during the initial keyframe
demonstration, and provides an adequate initial basis for per-
turbing keyframes. Future work could explore how to simulate
the robot actions even more quickly and enable more random
perturbations or exploring perturbations in configuration space.

In conclusion, the SAIL algorithm bridges LfD and planning
to enables a robot to learn key constraints and alternative
approaches to executing an action of interest. We show that it is
possible to learn new approaches to manipulation actions from
naı̈ve users in the wild, using a combination of simulation and
low-level sensor data to identify promising candidate actions,
distinguish between successful and unsuccessful motions in a
multi-step task, and to choose informative candidate actions
to execute with human users.
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