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1 INTRODUCTION
Allowing robots to understand their world in terms of affordances
[7] allows for generalization, learning, and complex planning, while
also being intuitive for humans to understand. In recent work,
affordances are often learned with hand-coded robot actions, which
can limit or bias the model. Real-world training has also been used
to learn affordances [5] and manipulation models [1], but is time-
consuming and unsafe for the robot and its environment.

In this work, we present a method for learning affordance models
by leveraging randomized self-exploration entirely in simulation.
Our approach learns dynamic behavior via simulated manipulation
actions sampled from a continuous feature space, building a model
of action-effect correspondences. Clustering provides a subset of
actions which is labeled by humans to provide context to the model.
These labels, actions, and effects together make up an affordance
model that can plan actions to invoke a desired label. We show that
our method results in robust controllers, even for subtle affordances
such as leaning and touching. We evaluate our results by performing
experiments both in simulation and on a real robot with a set of 6
reference objects.

2 RELATEDWORK
Robotic agents can learn how to interact with their environment
through self-exploration [1, 13], articulated motion models [9], and
grasping [10]. Exploration and model estimation can also be done
in simulation [2, 3, 12], with neural networks recently becoming
the norm for both real and simulated efforts. By using an object-
grounded affordance representation and applying human-readable
labels, we learn a model for both robots and humans, rather than
an opaque end-to-end network.

Chu et al. coupled human-guided exploration and self-exploration
to learn a fixed set of affordances [5]. On the other hand, simula-
tions and crowdsourcing have been used for large-scale affordance
learning [6, 8, 16, 17, 19], but only for a fixed set of manipulation
actions. Our work combines continuously-sampled actions and
open-ended effects, as well as labels, into a single framework.
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3 AFFORDANCE LEARNING
We formally define affordances as relations between the spaces of
objects (O), actions (A), and effects (E) [11]. Our aim in particular
is to find an action a ∈ A to induce a particular effect e ∈ E on an
object o ∈ O, the so called "action planning" step.

We define an affordance label, l ∈ L, as a short, descriptive
natural-language phrase that maps to one or more effects. A label-
ing function f maps every possible effect to a label, f : E → L.
Affordance labels augment the affordance model and achieve an
appropriate shared representation between human and robot. We
use a single label to describe a cluster of related effects to account
for the ambiguity inherent in natural language labels.

Our goal is to use simulated data to learnmodels for an affordance-
based action selection system that can be deployed on a real robot.
The procedure has four main steps: data collection, data labeling,
model construction, and action selection/playback.

To collect data, we simulate actions in theMuJoCo simulator [18].
The 6-element input includes the starting and ending (x ,y, z) posi-
tion of the end effector in a reference frame centered on the target
object. This is a richer representation than prior work, which gener-
ally constrains actions to a fixed-length motion parameterized by an
(x ,y) point and an angle. We search the action space using random
sampling, rather than the predefined actions or grid search used in
prior work [5, 19]. Each manipulation action includes one object,
one gripper, and sampled action. After each 8-second episode, we
store the 6D action and the effect: a normalized SE(3) transforma-
tion, (∆x/sx , ∆y/sy , ∆z/sz , ∆rx , ∆ry, ∆rz), where s {x,y,z } are the
object’s bounding box dimensions.

After collecting action-effect data, we cluster in the normalized
SE(3) effect space of each individual object by fitting a Gaussian
Mixture Model (GMM) using the Expectation-Maximization (EM)
algorithm and minimizing the Bayesian Information Criteria (BIC)
[15], producing a generative model of object behavior. To account
for possible over-segmentation, we replay simulations and collect
one- and two-word labels from humans for each of the GMM clus-
ters. (After labeling the exemplars for all clusters, some clusters
map to the same label.)

The affordance model associates SE(3) object transformations
with labels independent of class and size. Therefore, we expect
labels to transfer from one object to another with no transfor-
mations. To transfer the model, we predict the likelihood of new
objects’ effects using the labeled GMM developed for the first ob-
ject. Low-likelihood effects and unused labels are discarded, and
the remainder makes up the transferred model.

At execution time, the robot needs to select an appropriate action
to achieve a desired affordance label on a particular object. If the
provided label maps to multiple effect clusters, we must choose a



Figure 1: Various action selection methods, scored by how
often they resulted in the correct effect in real-world execu-
tion. Bars denote standard error.

specific action to perform. First, for each cluster, we find the ef-
fect closest to the cluster center, and define it as the exemplar. We
then evaluate exemplars for all clusters that match the label ("all
clusters"), as well as the exemplar of only the highest-population
cluster for each label ("largest clusters"). The exemplar action(s)
can be replayed directly on the robot using a Cartesian-space mo-
tion planner, converting the 6D action representation into a joint
trajectory1.

4 EXPERIMENTAL VALIDATION
We developed affordance models for a set of 6 objects (see Figure
2. The objects were modeled with low-fidelity mesh models and
primitives. Action samples were taken from αxαxzo regions, with
the start region centered on (α2 m, 0, zo/2) and the end region cen-
tered on (−α

2 m, 0, zo/2), where zo is the height of the manipulated
object. We also let α = 0.2m—dictated by the overall working space
of our robot arm. 2000 actions were sampled for each object.

For each component of the GMM, we found the exemplar ac-
tion as described in Section 3, and collected labels from a member
of the research team. During this ground-truth labeling, we used
6 affordance labels and select between them by applying simple
qualitative rules.

To evaluate how well a labeling function generalizes, we want to
measure its accuracy when its applied to objects other than the one

1We deployed our model on a robot with a Kinova Jaco arm and a Weiss WSG50
parallel gripper. The platform includes two onboard computers and runs ROS [14]
Kinetic.

used to build the model. Therefore, we perform a cross-validation
experiment, applying models from each object to all the others. The
labeling function fa () learned for one object is applied to all other
objects (see Section 3). The prediction accuracy is then given by
the equation accuracy(a,b) =

∑n
i=1 1(fa (ei ) = li )/n, where 1(·)

is the indicator function. We expect the cross-validation accuracy,
accuracy(a,a), to equal 1 when self-applied, since in that case, the
labeling function fa is performing prediction on the data used to
originally generate it.

5 RESULTS
In terms of action planning performance, Figure 1 shows that the
"largest clusters" approach outperformed "all clusters" in a majority
of cases. This suggests that the largest cluster for any given label
does in fact represent the primary example of the affordance effect.

The labeling model learned for the block had the highest average
prediction score of all the cross-applied models. We attribute to the
fact that the block’s action-effect mapping contains several different
behaviors, allowing it to capture behaviors of other objects as well
as its own.

The models learned in simulation are influenced heavily by the
object dimensions and (in the case of the mesh-modeled objects) un-
stable simulation behavior. Despite this, the affordances discovered
via our method, shown in Figure 2, are subtle enough to include
a leaning behavior, where the object rotates about its x- or y-axis,
but does not tip. A modified exploration strategy and more varied
actions could potentially uncover even more behaviors on each
object, resulting in better cross-object model transfer.

6 DISCUSSION AND CONCLUSIONS
We have developed a method for generating object affordance mod-
els purely using open-ended simulated exploration, and shown
results that point to the ability to develop affordance models that
are object-invariant. A key area for future study is the label collec-
tion process. Ideally, labels are supplied by non-expert users, rather
than supplying labels from a single expert user. Collecting labels for
a large number of users and different object types would provide
insight into how well labels generalize across effects, actions, and
human users.
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Figure 2: Affordances exhibited on our robot. The object/label pairs shownare: (a) sugar/tip (b) block/no-effect (c) crackers/push
(d) prism/touch (e) pitcher/turn (f) chips/lean. The chips, crackers, and sugar objects are from the YCB [4] object set.
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