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Abstract—In this work, we present an algorithm for au-
tonomously determining the appropriate location from which
to observe a human or robot agent (actor) while it completes a
task in dynamic environments. We develop theory for selecting
such a location using forward physical simulation of randomly-
selected candidate viewpoints. The simulated points provide
obstacle avoidance, and by incorporating a modified version of
the Social Force Model, candidate viewpoints adjust themselves
so that they do not encroach on the actor’s personal space
and/or safety region. The best observer position is chosen from
these candidates to provide the most complete view of the task
volume, taking into account the occlusion caused by the actor
itself. We show that our algorithm works under a variety of
task volume configurations, actor types (human and robot), and
environmental constraints. Finally, the paper shows the results
of hardware deployment on a two-robot system—one observer,
and one actor. The paper concludes by examining the social
impacts of deploying autonomous observation algorithms on
real-world systems.

I. INTRODUCTION

As autonomous physical systems become more widespread
in society, the need arises for robots that are both func-
tional and socially aware. Many functional robots, such as
unmanned aerial vehicles (UAVs) used for sport filming,
have limited “follow” capabilities, but may not include robust
obstacle avoidance, or may not respect humans’ personal
space. This can cause issues when operating in confined or
crowded spaces, or may simply make the filming subject
uncomfortable because of the UAV’s proximity. On the other
end of the spectrum lie socially aware robots, which have
arisen from research in human-robot interaction. Robots such
as Jibo [1] and Leonardo [2] may be “human-compatible” and
instill human confidence, and can perform many software-
based actions, such as face recognition, but do not perform
many useful physical tasks.

This paper attempts to strike a balance between the two
extremes, developing an algorithm for a socially-aware robot
that observes a target agent’s action (a useful physical
navigation-based task), while respecting the personal space
of the agent (human or otherwise). We refer to the observing
robot as the “observer,” and the target agent perfoming
the action, the “actor.” While many research efforts have
addressed the theoretical problem of following another agent
and keeping it in view in the presence of obstacles, this paper

seeks to address the problem of task observation with social
awareness, which adds additional constraints to the problem.
With regards to applications, some research has addressed
robot arm-based camera placement for local task observation
[3] [4], but our approach explicitly and generally models
both obstacles and visibility, which other works fail to take
into account. Our research combines ideas from human-robot
interaction, social robotics, and path planning. It also holds
implications for many existing consumer robotics platforms,
most notably UAVs.

When working with a human actor, the observer needs
to find the optimal position from which to view the task,
while satisfying three objectives (listed in order of decreasing
importance):

1) The observer should avoid obstacles in the environ-
ment.

2) The observer should respect the actor’s personal space
to avoid interfering with the task.

3) The task being performed should be completely in view
of the observer, with minimal occlusion from both the
environment and the actor.

The same objectives can be applied when the observer is
a robot, substituting the idea of a “safety zone” for personal
space, which could vary from robot to robot. Based on these
requirements, our work uses an explicit visibility calculation,
geometric definitions of the world, actor, and task region,
and the social force model (popular in the human-robot
interaction literature) to determine social dynamics and per-
sonal space. The algorithm is continuous and sampling-based,
making it able to operate in larger areas more accurately,
rather than calculating an explicit cost function over a small
discretized region.

The next section explores related work from various fields
of robotics, and discusses how this research builds upon it.
Section 3 defines the world and sampling algorithm. In Sec-
tion 4, we present implementation and hardware experiment
details. Section 5 contains the results of the experiments. The
last two sections contain a discussion of results, conclusions,
and future work.



II. RELATED WORK

One of the earliest works on autonomously maintaining
visibility of a target agent was performed by LaValle et al.
[5]. This paper introduced the idea of solving for a path
through a cluttered environment. The path was found to
always maintain line of sight without foreknowledge of the
target agent’s path through the environment. The theory of
maintaining visibility has been extended in various ways
[6], including solving the reverse problem of hiding from
a target agent [7], pursuing with limited sensors [8], and
observing multiple target agents with multiple observers [9].
Cancemi et al. [10] extend the visibility problem to include a
probabilistic representation of the target agent, and maximize
a spatial visibility function via gradient ascent. Our approach
is similar. We optimize for visibility of a region rather than
a single point; however, we sample points in space and then
apply social cues to determine appropriate viewing positions.

Autonomous tracking systems have been extended to vari-
ous domains in both simulation and the real world, inspiring
the research in this paper. An exploration of tracking strate-
gies on rover-like vehicles [11] showed that the best results
were obtained using laser-based tracking (a technology that
has since been improved upon with 3D depth sensors).
In simulation, researchers have studied finding smooth and
cinematographically pleasing paths in 3D space [12]. Another
study pre-calculates a cost map to quickly develop leader-
follower paths in a virtual tour guide setting [13].

This paper also draws from the rich research on human-
aware robot navigation. Specifically, the social force model
of human behavior [14] has been extended into the realm
of robot navigation. In this work, we utilize an adapted
version of Papadakis et al.’s distorted personal space model
[15], which posits that the zone of personal space around
a human is elliptical; that is, humans are more sensitive to
having other agents directly in front of and behind them (as
opposed to agents being to the human’s right or left). Other
examples of human-aware navigation include [16] and [17].
Researchers have studied human social cues specifically in
the context of interacting with robots. These works include
learning motion patterns in indoor settings to predict behavior
[18], as well as robots following subjects in wheelchairs and
dense indoor environments [19]. Yu et al. recently explored
the possibility of commanding an UAV to move and perform
simple actions using only human gaze and gaze trajectories.
[20]. A similar study shows that humans often interact with
UAVs as they would with a pet, using interpersonal gestures
such as beckoning or waving [21]. These works are good
examples of how social cues can be applied to deployed
functional robots, which is what we try to achieve in this
work.

Our work is most similar to that of Schroeter et al. [22],
which seeks to find the optimal location to observe a human
subject in good lighting (reducing glare, overexposure, etc.).
Our work also considers locations for viewpoint suitability,
but optimizes for a clear view of the actor’s task (while also
respecting personal space or a safety zone).

III. THEORY

We begin the formal definition of the viewpoint selection
algorithm by stating our assumptions. The world is 2D
Cartesian and every point can be classified as either free
space or impassable obstacles. (Note that this work could
easily be generalized to 3D, but 2D is sufficient for our
use cases.) We make the following assumptions to constrain
our problem. The obstacles are static and the observer is
holonomic, as is (roughly) the case with quadrotor UAVs, or
holonomically-steered ground vehicles. We also assume that
the actor’s identity (human, robot or otherwise) is known, and
that the task volume S (see below) is known for the actor.
In a real-world setting, new robots could communicate their
occlusion footprint OT and task volume S to the observer.

While other works discretize the state space to build a
visibility map, our system performs visibility calculations
online to allow more flexibility as the actor completes tasks in
different locations. With this in mind, we keep a continuous
representation of the world and sample from it randomly,
generating a set of candidate observation locations (compare
to [23]). Objective 1 is partially satisfied by immediately
discarding any candidates that lie within obstacles. Objec-
tive 2 is achieved by simulating the social dynamics for a
fixed length of time to allow the candidates to reach points
where the social force reaches an equilibrium. The simulated
candidates are each evaluated based on how well they can
see the task being performed, and the candidate providing
maximum visibility is chosen as the optimal viewpoint.

The physical environment is represented as follows. The
world consists of a set of obstacles, Oworld, each ele-
ment of which is a polygon in 2-space. In addition to the
obstacles, the world contains an actor, which has a pose
T = (xT , yT , θT ), as well as a camera-holding observer
with pose C = (xC , yC , θC). The actor has a physical
occlusion volume, OT , represented by a polygon. The total
set of occluding objects O contains both the actor as well
as the world: O = Oworld ∪ OT . In this paper, we also use
lowercase vectors to represent only the translational elements
of pose: t = (xT , yT ), c = (xC , yC). Figure 1 shows various
components of the algorithm visually.

First, a candidate set of n observation positions Γ0 =
(c1, c2, ...cn) is drawn randomly from the environment. This
is immediately filtered to exclude candidates that lie within
obstacles: Γi = Γ0 \ O.

The next set of variables defines the social context of the
environment. Following a basic version of the social force
model [14], we assume that a human exerts “social forces” on
nearby entities as those entities approach the actor’s personal
space (see Figure 1). Following the lead of Papadakis et al.
[15], we distort the personal space region to be larger directly
in front of and behind the human. We achieve this with an
anisotropy factor α, which distorts the circular personal space
into an ellipse according to the following formula:

α = (1− γ) + (γ| cos(θ)|) (1)



Where γ determines the amount of circular distortion
(γ = 0 gives a circle), and θ is the angle between the actor’s
heading and the observer’s position: θ = θT − angle(t− c).

We calculate the social force, Fs according to the equation

Fs = mksαmax(0, d− rs)(−(t− c)) (2)

Where m is the mass of the robot, ks and rs are the
strength and range of the social force, respectively, α is given
by Equation 1, and d is the straight-line distance between
the observer and actor, d = ||t − c||. Note that in the case
of a robot actor, the concept of personal space does not
make sense, but instead can be replaced by a “minimum safe
distance” to avoid a robot collision.

The physical force Fp repels the robot from any obstacles:

Fp =

σ∑
O
mkp max(0, d− rp)(−vclosest(σ)) (3)

Where, again, kp and rp are the strength and range of the
physical force. In this equation, vclosest is a vector pointing
from the observer position c to the nearest point lying on the
obstacle σ’s boundary.

The total force F on the robot is the sum of the individual
forces, F = Fs + Fp.

While simulating social navigation trajectories, our robot
obeys the Newtonian motion equation F = ma (making the
holonomic assumption is safe here, since the robot need not
actually follow these trajectories). The simulation lasts for
time tf with a timestep of ∆t. We call the set of candidates
after completing social simulation Γf .

Finally, we must calculate the visibility score for each
candidate, taking all occlusions into account. The observer
has a 2D field of view (FOV), ϕ. We define a task volume
S, which is attached to the actor’s reference frame T . S is a
set of polygons representing the area in which manipulation
tasks will take place. For example, a human will most likely
work in the area directly in front of them, with extents
limited by their arm length. This task space can be further
refined based on other factors (see [23]). When the actor is a
robot, the task space can be defined based on simulation and
empirical evaluation of the best manipulation zones around
the robot. These zones will be based primarily on known
reach and workspace of the manipulator, or, alternatively, on
the concept of “action-related places” (for more information,
see [24]).

To find the visibility score, we cast rays from ci in all
directions within the observer’s cone of visibility, [θC −
ϕ/2, θC +ϕ/2], until they strike an obstacle. By connecting
the endpoints of the ray, we build a visibility volume polygon,
Vi. The intersection, Wi, between the visibility volume and
the task volume is calculated asWi = Vi∩S (refer to Figure
1). From this definition we calculate the visibility score,
including a penalty for distance from the actor to discourage
extremely wide-angle shots:

Svis,i = area(W〉)/ area(S)− p||T − ci||22 (4)

Fig. 1: Left: the primary forces exerted by the social force
model: obstacle avoidance (blue) and personal space avoid-
ance (red). The resultant force vector is shown in black.
Right: A visual representation of the most important variables
in the viewpoint selection algorithm. The green viewable
area, W , is the union of the blue task volume, S, and the
yellow view volume, V (shown here for camera point C1).
The set of occluders, O is the union of the world Oworld and
the actor volume OT . Best viewed in color.

TABLE I: Parameter values for viewpoint selection

Parameter Symbol Value

Camera field of view, rad φ 1.5
Range of physical force, m rp 0.35
Range of social force, m rs 0.7
Number of viewpoint candidates n 100
Social force simulation time, s tf 10
Simulation timestep, s ∆t 0.2
Simulated robot mass, kg m 5
Anisotropy factor γ 0.4
Distance penalty factor p 0.25
Human occluder width, m – 0.4572 [25]
Human occluder depth, m – 0.24384 [25]

Where p is a tuning parameter for the distance penalty. The
final selected viewpoint is chosen as that having the highest
visibility score:

Cbest = max
Γf

(Svis) (5)

The robot can then use its navigation software to go to this
point and observe the task.

IV. IMPLEMENTATION

The viewpoint generation algorithm was implemented in
Python, using the parameter values shown in Table I. A
version of the source code has been made publicly available
under the open-source BSD license [26]. The code also
contains a binding to the Robot Operating System (ROS)
framework for hardware control. ROS is open-source soft-
ware used for motion planning, trajectory execution, navi-
gation, and sensor integration. The software is modular in
nature and emphasizes a high level of abstraction [27]. The
main software packages used for manipulator control and
visualization are MoveIt! and RViz respectively.

The hardware systems used in this effort were the
Clearpath TurtleBot 2 and UT Austin’s highly customized
VaultBot dual-arm mobile manipulator. The TurtleBot is a



low-cost differentially steered platform. The VaultBot (Figure
2) uses a Clearpath Husky mobile platform and two Universal
Robots UR5 6DOF industrial manipulators, which include
controller-level collision detection for safe operation. These
systems are controlled via ROS drivers provided by Clearpath
(TurtleBot, Husky) and ROS-Industrial [28] (UR5s). The
VaultBot is equipped with various sensors, including a SICK
LIDAR, a Robotiq two-finger gripper, and an Intel RealSense
R200 depth camera (Figure 2, right and left UR5 respec-
tively).

For this work the TurtleBot was the observer, and was
equipped with an action camera to watch the VaultBot actor.
The TurtleBot selected viewpoints based on the VaultBot’s
navigation map and world position. We use contour detection
to vectorize the world map, since our algorithm is not de-
signed for the discrete maps generated by ROS. We generate
candidates in a 3 m x 3 m box centered around the actor’s
position (rather than the whole world) to increase efficiency.

When the VaultBot is the actor, the volume of interest
is the manipulator workspace (each UR5 has a 850 mm
working radius). The UR5s are mounted to the bulkhead
about 0.30 m apart, resulting in workspace overlap and some
volume occupied by the VaultBot base (Figure 2). Tasks
above the VaultBot were not taken into account for this
work, leaving a volume on either side for single manipulator
tasks, as well as a small volume in front that is accessible
to both UR5s. The task volume for each manipulator was
approximated by a semicircle, ignoring volume of interest
regions above the VaultBot’s footprint. While the VaultBot
can use both UR5s simultaneously, most tasks require only
one, limiting the volume of interest to a single side.

Fig. 2: The VaultBot dual-arm mobile platform (left).
Schematic showing the VaultBot’s workspace for each ma-
nipulator (right UR5: blue, left UR5: red), viewed from above
(right). Figure best viewed in color.

V. RESULTS

The results from the VaultBot/TurtleBot task are shown
in Figure 3. As described in the Theory section, The initial
sampling of viewpoints is random. After forward simulation
of the social dynamics (shown by the black lines in the figure,
the final viewpoint candidates tend to cluster together, and
avoid obstacles. Note that while we use a simplified map to
generate the desired viewpoint, the robots operate using the
full-resolution map, allowing robust localization and naviga-
tion. The TurtleBot’s navigation software also accounts for
dynamic obstacles while seeking a. The result is a viewpoint

that is closer to the task and more visually informative than
what could be achieved using an observer located at a “safe
following distance” or stationary observation position.

In addition to real-world implementation, simulations also
give results and validate the method for task configurations.
Figure 4 shows the results of viewpoint selections performed
in simulation. Worlds with various amounts of free space
are used, including a tightly constrained “end of hallway”
environment. The selected viewpoints satisfy the original
goals developed in the introduction, providing a view of the
task volume while respecting distance from obstacles and the
actor.

A few interesting failure cases should be noted in Figure
4, including sampled camera locations which lie within
obstacles (due to numerical error), as well as ”optimal”
locations which lie within the task volume (still giving the
highest score according to Equation 4). Both failure cases
can be easily controlled by disallowing camera viewpoints
to lie within the task volume and/or obstacles, and enforcing
this rule after the social dynamics have been simulated.

VI. DISCUSSION

The results of the experiments (both hardware and simu-
lation) are encouraging, as they suggest that socially-aware
following and observation is achievable in unstructured envi-
ronments and using low-cost platforms such as the TurtleBot.
The described method comes with some limitations. One of
the most important is that the world is assumed to be sta-
tionary during viewpoint selection. Depending on the setting
and task, this assumption may prove unrealistic. However,
these were not concerns for our motivating application: that
of filming a single task in a generally static hazardous
environment. Another important simplification is that our
algorithm does not regard the reachability of a point in the
world - the observer may not be able to navigate to the
best viewpoint because it is physically blocked by the actor.
In this case, the correct behavior would be to request that
the actor move, or simply to choose the next best navigable
viewpoint. Despite these limitations, however, our algorithm
has potential in a variety of situations

For human actors, following, observing, and/or filming
raises ethical and privacy-related questions. These concerns
reinforce the need to navigate in socially-aware modes.
Additional task-specific constraints could allow filming only
in public areas, or in areas where the robot perceives that it is
acceptable to film. Other specific objectives, such as avoiding
crowded areas, could also be encoded into our force-based
model.

Once ethical and privacy concerns have been addressed,
the ability to autonomously observe other actors with a robot
can impact society in profound and often unexpected ways.
For example, conservationists have used camera-equipped
UAVs to observe the population and distribution of Sumatran
orangutans [29]. Another possibility is a “robot documen-
tary”, in which a robot could automatically follow an actor
around an environment, observing and filming from locations
that are safe, yet provide a good view of the actor’s actions.



Fig. 3: Top: overhead view of the two robots and world map
in the RViz visualizer. The TurtleBot observer is the black dot
at bottom center. Lower left: viewpoint selection results for
this case, centered on the VaultBot footprint. Blue regions
are obstacles, and the task volume is outlined in red. The
black lines show the simulated socially-guided motion of the
viewpoint candidates, ending at the black circles. The green
triangle represents the camera location giving the highest
score (the candidates are always oriented so as to be pointing
at the center of the task volume). Lower right: the TurtleBot’s
view after navigating to the selected position.

Using this method, the robot could create an informative
or instructional video. Yet another application is surveil-
lance and situational awareness in supervised autonomy or
teleoperation environments. In this case, an auxiliary robot
could be used to observe an actor operating in a hazardous
situation, giving better data and context to human supervisors
or operators.

VII. CONCLUSIONS AND FUTURE WORK

This work developed a theory of socially-aware viewpoint
selection, where an autonomous observer agent equipped
with vision determines the best position from which to view
a target actor agent as it performs a task. Simulation results
were generated for various configurations of obstacles, actors,
and task volumes, showing the technique’s flexibility, and
the algorithm was deployed onto robot hardware with good
results.

We envision several possible extensions to this work. The
case of time-varying trajectories could be introduced, perhaps
with a stationary observer. The algorithm would then be
modified to determine the best position from which to track
an actor’s task volume as that actor follows a given trajectory.
Alternatively, given the actor’s trajectory, a particle filter

approach could be used to predict the best observer trajectory
through time. Another possible extension is the generalization
of the influences of the social force model to a “task-specific”
cost function, including other cues, such as motion legibility
[24]. We also would like to explore extensions of this work
into co-robotics, including natural language processing to
help guide the robot’s observation style.
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