
Using a Depth Camera for Object Classification in Nuclear Gloveboxes

Adam Allevato*, Thomas Lu*, Mitchell Pryor*

*The University of Texas at Austin, 10100 Burnet Road MER Building Stop R8600, Austin, TX 78758

INTRODUCTION

Ever since the dangers of radiation have been

understood, humans have sought to reduce their exposure

to nuclear materials. To keep levels As Low As Reasonably

Achievable (ALARA), a balance must be struck between

avoidable and necessary exposures. This is a difficult

problem when various industries require the handling of

nuclear materials on a regular basis. Some of these tasks,

such as removing and inserting fuel rods in a reactor, are

well-defined and repeatable, and thus easily automated.

However, other procedures, including experiments and

spill cleanup, require additional dexterity and versatility

that until recently have been unattainable by machines.

With the advent of new sensor technologies and processing

techniques, robots have gained the ability to perform a

broader range of nuclear material handling tasks.

A major problem still facing automated systems is the

detection and classification of objects located in arbitrary

locations in a robot's work area. These objects may be tools

or materials that a robot can manipulate once detected.

Computers cannot yet fully emulate the physics and

neuroscience behind human vision, but in recent years they

have made significant improvements in the realm of visual

perception. Many of these advancements have been

collectively captured in the software library Open Source

Computer Vision (OpenCV). The first complete version of

OpenCV, originally developed at Intel, was released in

2006 [1]. OpenCV contains a variety of established 2D

image processing techniques, such as edge detection [2]

and pattern matching [3]. This makes it suitable for

detecting visual tags such as QR-style “barcodes,” but it is

not designed for complex processing of 3D sensor data. In

2010, the Point Cloud Library (PCL) was created by

Willow Garage [4] and is currently maintained by the Open

Perception Foundation [5]. PCL is designed for processing

data from 3D cameras such as the Microsoft Kinect, which

use infrared light to estimate distances. The library

includes machine learning-based classifiers for resolving

point clouds into known objects and for estimating their

position and orientation in 3D space. Some of these

classifiers achieve accuracy upwards of 90%, but tasks

involving nuclear material demand extreme accuracy and

often are performed in challenging environments (i.e.

poorly lit, confined, harsh environment for sensors, etc.).

At Los Alamos National Laboratory, nuclear material

is handled in lead-lined gloveboxes with reflective

polished surfaces. In addition, most of the objects of

interest, including tools and the nuclear materials, are

metal. The high specular reflectivity of these objects make

it difficult to either obtain unique patterns in individual

objects for 2D recognition or generate complete point

clouds using infrared scanning for 3D point cloud

recognition.

To address this issue, a new 3D classifier algorithm

was developed to provide faster, more robust object

classification and pose estimation than other classifiers

when used in a glovebox setting such as that described

above [6]. Initial results were encouraging for a small set

of objects using a first generation 3D camera. In this paper,

results are presented for detecting objects using a second

generation 3D camera on a larger dataset using the Circular

Projection Histogram (CPH) classifier. Additionally, the

code and demonstration environment have been updated

for ease-of-use for both novice developers and end-users.

APPROACH

To evaluate the performance of the CPH classifier in a

glovebox, point cloud data from 13 different objects (a

30% increase over previous sample sizes [3]) was collected

and CPH was applied to these clouds. Objects selected are

commonly found in a lab or glovebox environment. The

list of objects tested is shown in Table I.

Most objects in the training set are metal with

reflectivity similar to the glovebox surfaces. CPH is a

scale-variant classifier, meaning it can discern between

objects of identical shape but different size. This is in

contrast to some of the classifiers provided with PCL, such

as the Viewpoint Feature Histogram classifier [7]. To test

this capability, some of the objects have the same shape,

but different size (e.g., large_can_lidded and

small_can_lidded). The experimental testing setup is

shown in Figures I and VIII. The experiment was designed

to be as much like actual glovebox working conditions as

possible. The 3D camera, an ASUS Xtion Pro, improves on

the capabilities of the first-generation Microsoft Kinect,

providing highly detailed point clouds.

Table I. Training Dataset

Label Description

large_can_lidded Brushed metal can with lid, 8in. dia.

small_can_lidded Brushed metal can with lid, 4in. dia.

medium_can Brushed metal can, no lid, 6in. dia.

small_bowl 8in. dia. metal bowl

large_bowl 10in. dia. metal bowl

tslot Small piece of aluminum extrusion

ball Foam ball, 4in. dia.

lathe_tool Lathe tool mount

tape_roll Roll of yellow duct tape

ring Steel coupling ring, 6in. dia.

hub Steel hub with axle, 4in. dia.

bottle Plastic colored water bottle

broom Plastic long-handled brush

The software pipeline is shown in Fig. 4. Early in the

research process, it was discovered that the recognition

results are dependent on the parameters used to filter the

point clouds. With incorrect filtering parameters, point

clouds would incorrectly cluster together, or entire clouds

would be missed. A control panel was built using ROS’s

dynamic_reconfigure package [8] to allow for easy

adjustment of filtering parameters on-the-fly. Table II

shows the parameters used in the experiments.

Fig. 1. Experiment Schematic

The dense point clouds from the Xtion Pro were first

processed using a voxel grid filter [9], downsampling the

raw point cloud data from the 3D camera using methods

provided by PCL. Points outside the work area were

removed by clipping the point cloud to fit within a

bounding box. Next, the largest planar set of points in the

scene was removed by using the random sample consensus

(RANSAC) plane-finding method [10]. Planar features

were removed until the number of points remaining in the

cloud is less than the “Analysis percentage” parameter (see

Table II). Finally, the remaining points are clustered into

groups, which correspond to the different objects in the

scene. Heavily filtering and processing the point clouds

helped make the recognition step as fast as possible by

reducing the amount of data throughput.

Table II. Point Cloud Processing Parameters

Parameter Value

Bounding box x-max* 0.4m

Bounding box x-min* -0.4m

Bounding box y-max* 0.35m

Bounding box y-min* -0.6m

Bounding box z-max* 1.4m

Bounding box z-min* 0.2m

Maximum plane-finding iterations 50

Segmentation distance threshold 1cm

Analysis percentage 30%

Voxel grid filter leaf size 5mm

Minimum cluster size 300 points
*The origin for the bounding box’s coordinate frame is attached

to the camera itself and follows the right-hand rule. See Fig. 1.

Fig. 2. The CPH point cloud classifier [6].

The processed clouds were then processed using the

CPH method, which takes a point cloud and converts it to

a histogram (Fig. 2 and Fig. 3). We treat the histogram as a

360-dimensional feature vector. In the training stage, this

histogram was saved to a file. In the testing stage, the

pipeline compared the feature vector with those saved

during the testing stage to determine the classification

result. To improve accuracy in the testing stage, the

classification is repeated multiple times a second, and the

results are updated using a naive Bayesian classifier.

Fig. 3. An example CPH result [6].

Because the training step treats each angle view of the

object as a separate data point, classification automatically

provides an estimate of the object’s pose (rotation about the

object’s vertical axis). In each step, the detected position is

taken as the centroid of the 3D point cloud. Both the pose

and position estimates are prone to errors from incorrect

classifications and noisy data, so to reduce the effects of

noise on the overall results, we filter the pose and position

using a Kalman filter with the prediction step omitted [11]

(this is the same approach taken in previous research

efforts [6]).

Fig. 4. Recognition Software Pipeline

Robotic Operating System (ROS) was used to control

both the training and testing stages. ROS is a modular code

framework that contains many computer vision-related

packages, allowing for easy extension and modularity [12]

(for example, using a different 3D camera or pan table). In

the training stage, ROS interfaced with the Arduino-

controlled pan table which rotated the object 360°.

Training objects at different angles allows the system to

identify the object's rotation about the vertical axis during

the testing stage, in addition to classifying the object type.

In the testing stage, the pan table is removed and

objects are placed in the work area. A feature vector is

created for each point cluster in the scene and passed along

the pipeline for recognition based on training data collected

for the 13 objects listed above. The pipeline uses the

FLANN k-Nearest Neighbor (k-NN) algorithm [13] to

match testing feature vectors to training data and return

object classifications.

Since the vision pipeline treats each cluster in the work

area individually, it is capable of recognizing an object

from a collection as well as recognizing individual objects,

provided they are far enough apart to be segmented as

distinct clusters. In addition, the system classifies objects

iteratively, making continuous passes over each cluster in

the work area and updating its determination using a

predictive statistical model. Until it has reasonable

confidence to return one label consistently for each object,

the system may return conflicting object labels on each

pass of the classification algorithm. Thus, a useful metric

of the CPH method’s effectiveness is the accuracy of the

reported labels in the first N passes.

RESULTS

It is demonstrated that the vision pipeline using the

CPH method is suitable for near real-time applications. The

system was tested with objects in the dataset placed

individually at various locations in the glovebox. The

accuracy of object classifications within the first 40 passes

was recorded at each location, and the predictive statistical

model for each object was reset each time the object was

repositioned. The average system accuracy for a few

objects is shown in Fig. 5.

Fig. 5. Average Classification Accuracy in 40 Passes by

Location

The system accuracy shown in Fig. 5 is the worst-case

scenario, and naïve Bayesian classification improves the

overall accuracy significantly. Each pass was completed in

approximately 210 ms. Given that the Bayesian classifier

reliably classifies objects in a small number of passes of

the classification algorithm, the system operator can be

reliably shown object recognition results with negligible

latency.

Fig. 6 shows the user interface. The interface is

designed to provide the operator with maximum control

over the vision pipeline, while providing important

feedback from the classifier. The full point cloud is

overlaid on the color image from the depth camera, with

the point clouds for detected objects highlighted on a black

background. The yellow labels provide the classification

result with a certainty value as determined by the Bayes

classifier, and also display the estimated position and pose

of the object.

Fig. 6. Recognition output and configuration panel.

The vision pipeline used does have minor drawbacks.

The location-based accuracy of the system reveals that the

angle at which the system sees an object in the work area

affects its ability to classify the object. When the angle

between the camera’s viewpoint and the object’s vertical

axis differs significantly from the angle at which the

system was trained, the feature vector generated for the

testing object will appear skewed with respect to the

training data and result in a greater probability of

misidentification. In general, this effect becomes more

pronounced as objects in the work area are brought closer

to the camera. This results in increased accuracy for objects

towards the side of the glovebox far from the camera. This

deficiency could be addressed by lowering the camera to

minimize the change in the viewing angle or using distance

data to ascertain which of multiple training sets are

appropriate, or – most simply – using cameras located at

multiple windows and using results from those with the

most appropriate viewing angle.

Fig. 7. Cluttered scene with recognition results and a

reproduction of the scene in the glovebox

Fig. 8. Glovebox with camera outside glovebox window

Fig. 7 shows a cluttered scene in a glovebox containing 10

objects. The detected point clouds are shown in orange

with the classification labels overlayed. The recognition

pipeline provides a correct classification for all objects

(green labels in the figure). However, in some cases

(circled red labels), a single object produces more than one

classification result. This is due to objects' material

properties and shapes, which result in incomplete point

clouds. The incomplete clouds are then split into two

different clusters and classified separately.

CONCLUSIONS AND FUTURE WORK

Detecting objects quickly and reliably in a laboratory

environment is an important step towards automating

complex tasks or – at a minimum – automating additional

verification capabilities that are required when handling

nuclear materials. The pipeline that was built around the

CPH classifier is a fast technique that quickly categorizes

objects and determines their pose (i.e. location and

orientation), even in specularly reflective glovebox

environments that contain reflective objects. Tests have

shown that the classifier pipeline can discern between

numerous objects within a reasonable work area.

The classifier and vision pipeline have been integrated

into a pick-and-place system, where a robotic manipulator

discerns between objects using CPH. The robot can then

pick up the desired object and move it to a target position

(Fig. 9).

Fig. 9. Vision-controlled pick-and-place task

ACKNOWLEDGEMENTS

This material is based upon work supported by Los

Alamos National Laboratory and the University of Texas

at Austin.

REFERENCES

1. “ABOUT | OpenCV,” Itseez; opencv.org/about.html

(current as of Feb. 26, 2015).

2. “Canny Edge Detection,” OpenCV;

docs.opencv.org/trunk/doc/py_tutorials/py_imgproc/

py_canny/py_canny.html (current as of Feb. 27,

2015).

3. “Template Matching,” OpenCV;

docs.opencv.org/doc/tutorials/imgproc/histograms/te

mplate_matching/template_matching.html (current as

of Feb. 27, 2015).

4. R. RUSU and STEVE COUSINS, “3D is here: Point

Cloud Library (PCL),” IEEE Int. Conf. on Robotics

and Automation (ICRA), Shanghai, China, May 9-13,

2011.

5. “Open Perception,” Open Perception, Inc.;

openperception.org (current as of Feb. 28, 2015).

6. B. O'NEIL, “Object Recognition and Pose Estimation

for Manipulation in Nuclear Materials Handling

Applications,” Dissertation, University of Texas at

Austin, Mechanical Engineering (May 2013).

7. R. RUSU, G. BRADSKI, R. THIBAUX, J. HSU,

“Fast 3D Recognition and Pose Using the Viewpoint

Feature Histogram,” Proc. of the 23rd IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems (IROS),

Taipei, Taiwan, October, 2010.

8. “dynamic_reconfigure,” ROS.org,

wiki.ros.org/dynamic_reconfigure (current as of Feb.

28, 2015).

9. “Downsampling a PointCloud using a VoxelGrid

filter,” Point Cloud Library,

pointclouds.org/documentation/tutorials/voxel_grid.p

hp (current as of Feb. 28, 2015).

10. M. FISCHLER and R. BOLLES, “Random sample

consensus: a paradigm for model fitting with

Applications to Image Analysis and Automated

Cartography,” Comm. of the ACM, 24, 6, 381 (1981).

11. R. KALMAN, “A New Approach to Linear Filtering

and Prediction Problems,” Trans. of the ASME –

Journal of Basic Engineering, 82, Series D, 35

(1960).

12. “About ROS,” Open Source Robotics Foundation;

ros.org/about-ros/ (current as of Feb. 26, 2015).

13. M. MUJA and D. LOWE, “Fast Approximate

Nearest Neighbors with Automatic Algorithm

Configuration,” Proc. of Int. Conf. on Computer

Vision Theory and Application (VISSAPP ’09),

Lisboa, Portugal, Feb. 5-8, 2009, pp. 331-340,

INSTICC Press (2009).

