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INTRODUCTION 

 

Ever since the dangers of radiation have been 

understood, humans have sought to reduce their exposure 

to nuclear materials. To keep levels As Low As Reasonably 

Achievable (ALARA), a balance must be struck between 

avoidable and necessary exposures. This is a difficult 

problem when various industries require the handling of 

nuclear materials on a regular basis. Some of these tasks, 

such as removing and inserting fuel rods in a reactor, are 

well-defined and repeatable, and thus easily automated. 

However, other procedures, including experiments and 

spill cleanup, require additional dexterity and versatility 

that until recently have been unattainable by machines. 

With the advent of new sensor technologies and processing 

techniques, robots have gained the ability to perform a 

broader range of nuclear material handling tasks. 

A major problem still facing automated systems is the 

detection and classification of objects located in arbitrary 

locations in a robot's work area. These objects may be tools 

or materials that a robot can manipulate once detected. 

Computers cannot yet fully emulate the physics and 

neuroscience behind human vision, but in recent years they 

have made significant improvements in the realm of visual 

perception. Many of these advancements have been 

collectively captured in the software library Open Source 

Computer Vision (OpenCV). The first complete version of 

OpenCV, originally developed at Intel, was released in 

2006 [1].  OpenCV contains a variety of established 2D 

image processing techniques, such as edge detection [2] 

and pattern matching [3]. This makes it suitable for 

detecting visual tags such as QR-style “barcodes,” but it is 

not designed for complex processing of 3D sensor data. In 

2010, the Point Cloud Library (PCL) was created by 

Willow Garage [4] and is currently maintained by the Open 

Perception Foundation [5]. PCL is designed for processing 

data from 3D cameras such as the Microsoft Kinect, which 

use infrared light to estimate distances. The library 

includes machine learning-based classifiers for resolving 

point clouds into known objects and for estimating their 

position and orientation in 3D space. Some of these 

classifiers achieve accuracy upwards of 90%, but tasks 

involving nuclear material demand extreme accuracy and 

often are performed in challenging environments (i.e. 

poorly lit, confined, harsh environment for sensors, etc.). 

At Los Alamos National Laboratory, nuclear material 

is handled in lead-lined gloveboxes with reflective 

polished surfaces. In addition, most of the objects of 

interest, including tools and the nuclear materials, are 

metal. The high specular reflectivity of these objects make 

it difficult to either obtain unique patterns in individual 

objects for 2D recognition or generate complete point 

clouds using infrared scanning for 3D point cloud 

recognition. 

To address this issue, a new 3D classifier algorithm 

was developed to provide faster, more robust object 

classification and pose estimation than other classifiers 

when used in a glovebox setting such as that described 

above [6]. Initial results were encouraging for a small set 

of objects using a first generation 3D camera. In this paper, 

results are presented for detecting objects using a second 

generation 3D camera on a larger dataset using the Circular 

Projection Histogram (CPH) classifier. Additionally, the 

code and demonstration environment have been updated 

for ease-of-use for both novice developers and end-users. 

 

APPROACH 

 

To evaluate the performance of the CPH classifier in a 

glovebox, point cloud data from 13 different objects (a 

30% increase over previous sample sizes [3]) was collected 

and CPH was applied to these clouds. Objects selected are 

commonly found in a lab or glovebox environment. The 

list of objects tested is shown in Table I. 

Most objects in the training set are metal with 

reflectivity similar to the glovebox surfaces. CPH is a 

scale-variant classifier, meaning it can discern between 

objects of identical shape but different size. This is in 

contrast to some of the classifiers provided with PCL, such 

as the Viewpoint Feature Histogram classifier [7]. To test 

this capability, some of the objects have the same shape, 

but different size (e.g., large_can_lidded and 

small_can_lidded). The experimental testing setup is 

shown in Figures I and VIII. The experiment was designed 

to be as much like actual glovebox working conditions as 

possible. The 3D camera, an ASUS Xtion Pro, improves on 



the capabilities of the first-generation Microsoft Kinect, 

providing highly detailed point clouds. 

 

Table I. Training Dataset 

Label Description 

large_can_lidded Brushed metal can with lid, 8in. dia. 

small_can_lidded Brushed metal can with lid, 4in. dia. 

medium_can Brushed metal can, no lid, 6in. dia. 

small_bowl 8in. dia. metal bowl 

large_bowl 10in. dia. metal bowl 

tslot Small piece of aluminum extrusion 

ball Foam ball, 4in. dia. 

lathe_tool Lathe tool mount 

tape_roll Roll of yellow duct tape 

ring Steel coupling ring, 6in. dia. 

hub Steel hub with axle, 4in. dia. 

bottle Plastic colored water bottle 

broom Plastic long-handled brush 

 

The software pipeline is shown in Fig. 4. Early in the 

research process, it was  discovered that the recognition 

results are dependent on the parameters used to filter the 

point clouds. With incorrect filtering parameters, point 

clouds would incorrectly cluster together, or entire clouds 

would be missed. A control panel was built using ROS’s 

dynamic_reconfigure package [8] to allow for easy 

adjustment of filtering parameters on-the-fly. Table II 

shows the parameters used in the experiments. 

 
Fig. 1. Experiment Schematic 

 

The dense point clouds from the Xtion Pro were first 

processed using a voxel grid filter [9], downsampling the 

raw point cloud data from the 3D camera using methods 

provided by PCL. Points outside the work area were 

removed by clipping the point cloud to fit within a 

bounding box. Next, the largest planar set of points in the 

scene was removed by using the random sample consensus 

(RANSAC) plane-finding method [10]. Planar features 

were removed until the number of points remaining in the 

cloud is less than the “Analysis percentage” parameter (see 

Table II). Finally, the remaining points are clustered into 

groups, which correspond to the different objects in the 

scene. Heavily filtering and processing the point clouds 

helped make the recognition step as fast as possible by 

reducing the amount of data throughput. 

 

Table II. Point Cloud Processing Parameters 

Parameter Value 

Bounding box x-max* 0.4m 

Bounding box x-min* -0.4m 

Bounding box y-max* 0.35m 

Bounding box y-min* -0.6m 

Bounding box z-max* 1.4m 

Bounding box z-min* 0.2m 

Maximum plane-finding iterations 50 

Segmentation distance threshold 1cm 

Analysis percentage 30% 

Voxel grid filter leaf size 5mm 

Minimum cluster size 300 points 
*The origin for the bounding box’s coordinate frame is attached 

to the camera itself and follows the right-hand rule. See Fig. 1. 

 

 

 
Fig. 2. The CPH point cloud classifier [6]. 

 

The processed clouds were then processed using the 

CPH method, which takes a point cloud and converts it to 

a histogram (Fig. 2 and Fig. 3). We treat the histogram as a 

360-dimensional feature vector. In the training stage, this 

histogram was saved to a file. In the testing stage, the 

pipeline compared the feature vector with those saved 

during the testing stage to determine the classification 

result.  To improve accuracy in the testing stage, the 

classification is repeated multiple times a second, and the 

results are updated using a naive Bayesian classifier. 



 
Fig. 3. An example CPH result [6]. 

 

Because the training step treats each angle view of the 

object as a separate data point, classification automatically 

provides an estimate of the object’s pose (rotation about the 

object’s vertical axis). In each step, the detected position is 

taken as the centroid of the 3D point cloud. Both the pose 

and position estimates are prone to errors from incorrect 

classifications and noisy data, so to reduce the effects of 

noise on the overall results, we filter the pose and position 

using a Kalman filter with the prediction step omitted [11] 

(this is the same approach taken in previous research 

efforts [6]). 

 
Fig. 4. Recognition Software Pipeline 

 

Robotic Operating System (ROS) was used to control 

both the training and testing stages. ROS is a modular code 

framework that contains many computer vision-related 

packages, allowing for easy extension and modularity [12] 

(for example, using a different 3D camera or pan table). In 

the training stage, ROS interfaced with the Arduino-

controlled pan table which rotated the object 360°. 

Training objects at different angles allows the system to 

identify the object's rotation about the vertical axis during 

the testing stage, in addition to classifying the object type. 

In the testing stage, the pan table is removed and 

objects are placed in the work area. A feature vector is 

created for each point cluster in the scene and passed along 

the pipeline for recognition based on training data collected 

for the 13 objects listed above. The pipeline uses the 

FLANN k-Nearest Neighbor (k-NN) algorithm [13] to 

match testing feature vectors to training data and return 

object classifications.  

Since the vision pipeline treats each cluster in the work 

area individually, it is capable of recognizing an object 

from a collection as well as recognizing individual objects, 

provided they are far enough apart to be segmented as 

distinct clusters. In addition, the system classifies objects 

iteratively, making continuous passes over each cluster in 

the work area and updating its determination using a 

predictive statistical model. Until it has reasonable 

confidence to return one label consistently for each object, 

the system may return conflicting object labels on each 

pass of the classification algorithm. Thus, a useful metric 

of the CPH method’s effectiveness is the accuracy of the 

reported labels in the first N passes.  

 

RESULTS 

 

It is demonstrated that the vision pipeline using the 

CPH method is suitable for near real-time applications. The 

system was tested with objects in the dataset placed 

individually at various locations in the glovebox. The 

accuracy of object classifications within the first 40 passes 

was recorded at each location, and the predictive statistical 

model for each object was reset each time the object was 

repositioned. The average system accuracy for a few 

objects is shown in Fig. 5.  

 
Fig. 5. Average Classification Accuracy in 40 Passes by 

Location 

 

The system accuracy shown in Fig. 5 is the worst-case 

scenario, and naïve Bayesian classification improves the 

overall accuracy significantly. Each pass was completed in 



approximately 210 ms. Given that the Bayesian classifier 

reliably classifies objects in a small number of passes of 

the classification algorithm, the system operator can be 

reliably shown object recognition results with negligible 

latency.  

Fig. 6 shows the user interface. The interface is 

designed to provide the operator with maximum control 

over the vision pipeline, while providing important 

feedback from the classifier. The full point cloud is 

overlaid on the color image from the depth camera, with 

the point clouds for detected objects highlighted on a black 

background. The yellow labels provide the classification 

result with a certainty value as determined by the Bayes 

classifier, and also display the estimated position and pose 

of the object. 

 
Fig. 6. Recognition output and configuration panel. 

 

The vision pipeline used does have minor drawbacks. 

The location-based accuracy of the system reveals that the 

angle at which the system sees an object in the work area 

affects its ability to classify the object. When the angle 

between the camera’s viewpoint and the object’s vertical 

axis differs significantly from the angle at which the 

system was trained, the feature vector generated for the 

testing object will appear skewed with respect to the 

training data and result in a greater probability of 

misidentification. In general, this effect becomes more 

pronounced as objects in the work area are brought closer 

to the camera. This results in increased accuracy for objects 

towards the side of the glovebox far from the camera. This 

deficiency could be addressed by lowering the camera to 

minimize the change in the viewing angle or using distance 

data to ascertain which of multiple training sets are 

appropriate, or – most simply – using cameras located at 

multiple windows and using results from those with the 

most appropriate viewing angle. 

 

 

 
Fig. 7. Cluttered scene with recognition results and a 

reproduction of the scene in the glovebox  

 

 
Fig. 8. Glovebox with camera outside glovebox window  



Fig. 7 shows a cluttered scene in a glovebox containing 10 

objects. The detected point clouds are shown in orange 

with the classification labels overlayed. The recognition 

pipeline provides a correct classification for all objects 

(green labels in the figure). However, in some cases 

(circled red labels), a single object produces more than one 

classification result. This is due to objects' material 

properties and shapes, which result in incomplete point 

clouds. The incomplete clouds are then split into two 

different clusters and classified separately. 

 

CONCLUSIONS AND FUTURE WORK 

 

Detecting objects quickly and reliably in a laboratory 

environment is an important step towards automating 

complex tasks or – at a minimum – automating additional 

verification capabilities that are required when handling 

nuclear materials. The pipeline that was built around the 

CPH classifier is a fast technique that quickly categorizes 

objects and determines their pose (i.e. location and 

orientation), even in specularly reflective glovebox 

environments that contain reflective objects. Tests have 

shown that the classifier pipeline can discern between 

numerous objects within a reasonable work area. 

The classifier and vision pipeline have been integrated 

into a pick-and-place system, where a robotic manipulator 

discerns between objects using CPH. The robot can then 

pick up the desired object and move it to a target position 

(Fig. 9). 

 

 
Fig. 9. Vision-controlled pick-and-place task 
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