Demonstrating Autonomous and Robust Sorting in a Glovebox Environment

Adam Allevato, Matthew W. Horn, and Mitch Pryor

Nuclear and Applied Robotics Group, The University of Texas at Austin, 10100 Burnet Rd, Austin, Texas 78758, USA
allevato @utexas.edu, mwhorn@utexas.edu, mpryor@utexas.edu

INTRODUCTION

Even with the widespread growth of robotics, glovebox
automation systems still face significant challenges on their
path to maturity and eventual adoption in the nuclear-industrial
complex. National labs and other institutions have countless
uses for a flexible, autonomous, in-place system capable of
performing hazardous tasks, but so far the risks and challenges
of such a system have outweighed the benefits.

The various hardware and software components in indus-
trial robotics have advanced in recent years, allowing us to
build systems that overcome challenges and approach practical
usefulness. To prove the usefulness of these advancements,
we chose to implement the open-ended task of sorting solid
radioactive waste autonomously in a glovebox. Handling and
characterization of solid radioactive waste is one of the most
widespread tasks involving radioactive materials. According
to the International Atomic Energy Agency (IAEA), several
countries face the issue of how to process waste from tempo-
rary or interim facilities [1], and the agency also provides spe-
cific instructions for collection and packaging of solid wastes.
The IAEA warns that "it may become necessary to combine
the range of pretreatments, monitoring, dismantling, shredding
and deconamination with the sorting and packing stages" [2],
making sorting an multifaceted task that can show off of many
capabilities of an automated system. By performing basic
sorting autonomously, we show our system’s ability to intelli-
gently and safely perform a common glovebox task, and also
build a foundation to demonstrate higher-level capabilities in
the future, such as material reduction or intelligent packing.

To complete even a basic task involving hazardous materi-
als in a glovebox poses many high level challenges. One of the
first issues is installing a manipulator in a glovebox. While this
may seem like a trivial challenge, the amount of logistics and
certifications required to install a machine in a hazardous envi-
ronment (such as a national lab) quickly becomes prohibitive.
Cable-driven manipulators in hot cells, such as the M-2 ([3l)),
remain in place for years after deployment. A more robust
automation system should have the ability to switch between
various deployment configurations once installed. This will
allow the system to adapt to the needs of the current task.

Safety is another paramount concern in gloveboxes, espe-
cially when materials such as plutonium are involved. A good
automation system should involve safety checks at every level,
to protect both the system itself as well as human operators.

To perform more open-ended or custom tasks, an automa-
tion system must also be extremely flexible, both in terms
of hardware degrees of freedom as well as software capabil-
ity. A good system should be able to complete generic tasks
such as sorting, packing, interacting with other machines, and
rearranging objects, all in an unconstrained environment. Fi-
nally, there must be a determination of the appropriate level of

Level Tele-operation — Autonomy...

Reduce or eliminate operator’s need to manage the robot’s internal

1 - .
configuration.

Reduce or eliminate the operator’s responsibility for avoiding undesired
contact with the environment.

Reduce or eliminate the operator’s responsibility for moving the robot to

3 . .
locations of interest.

4 Reduce or eliminate the operator’s responsibility for selecting a proper
grasping configuration for retrieving selected objects.
Allow the operator to quickly direct the system to complete tasks that

5 involve subtasks completed as directed in levels 3 & 4 (such as pick and

place).

Reduce or eliminate the operator’s responsibility to avoid threshold forces
6 for contact tasks such as opening a door or lifting items exceeding the
system’s payload.

Reduce or eliminate the levels of detail that are necessary for the operator
to communicate a task (or subtasks) to the robotic system.

Integrate capability to complete tasks that require high levels of precision
and/or the control of a specific force profile.

Reduce or eliminate the need for the operator to be in the loop for tasks
9 that respond to non-operator, independent external events (i.e. timer on
oven, low battery notification, etc.).

Based on prior tasks completed, the system anticipates future tasks to be

10 completed based on historical use.

TABLE I. Transitional levels of autonomy from Brabec et. al.

(4]

autonomy for the remote system, see Table

In previous sorting efforts [[1]] [2] [S]] [6] discussed below,
the highest level of autonomy on a deployed system was Level
1, where the operator is responsible for every facet of the
robot’s movements.

Recent efforts at UT Austin and in the broader community
make it possible to demonstrate relevant sorting tasks at a level
6-7 in Table

RELATED WORK

Automating radioactive waste sorting is not a new idea.
In 2002, the United States’ Department of Energy (DOE)
began development of the Handling and Segregating System
for 55-gallon drums of mixed waste, or HANDSS-55. Once
implemented, the system would have consisted of multiple
modules to unpack 55-gallon drums, characterize and sort the
waste inside, and repackage the appropriate waste for disposal
at a long-term storage site, such as the Waste Isolation Pilot
Plant (WIPP) in New Mexico. By including automatic object
detection and characterization and performing simple tasks
for the operator [7], [6], the system would have achieved
Level 4 on the autonomy scale. HANDSS-55 was designed
to be deployed at the Savannah River Site by 2005, but the
the DOE Robotics Crosscutting program was discontinued in
2002, halting progress on the project.

DOE is advancing levels of autonomy in facilities, with



one notable system being the Advanced Recovery and Inte-
grated Extraction System (ARIES) at Los Alamos National
Lab. The system includes a three-axis gantry robot for trans-
porting materials [8]. ARIES operates at an autonomy level
of 4 (reducing or eliminiating the operator’s responsibility for
grasp configurations), but its flexibility is extremely limited.
This system has been in development for 20 years, which sug-
gests that glovebox manipulation is a solved problem. How-
ever, the ARIES system is designed to handle an extremely
specific subset of hazardous materials—plutonium weapon pits.
We seek a more general, robust solution.

Current technology employed by nuclear facilities and
waste-sorting facilities include remote-controlled diggers, tele-
operated robotic arms, and remote grappling devices. Robotic
Manipulation for Nuclear Sort and Segregation (RoMaNS) [9]
is a recent effort put forth by the European Union for automat-
ing radiation sorting tasks. Ortenzi et al. [3]], a member of
RoMaNS, compares two different control schema for robot/en-
vironment contact tasks that should help improve future oper-
ation of radiation sorting. Specifically, in Minimization and
Segregation of Radioactive Wastes published by the IAEA
[2], several sorting tasks of materials that pose a large risk to
operators must be done with rakes, pushers, or teleoperated
robotic manipulators.

NRG has developed key technologies for robust glovebox
automation as separate projects, and our manipulation system
incorporates many recent advancements, producing safer and
more robust results than previous attempts.

Brabec et al. installed various manipulators in gloveboxes
to perform simple tasks, such as grasping objects, and also
showed the ability to open cabinet doors using a 3D vision-
based approach. Their results proved the concept of open-
ended glovebox automation deployment, but did not perform
start-to-finish tasks in a glovebox. [4]].

Computer vision is a key tool in providing robust automa-
tion in the face of uncertainty. Allevato et al. have shown
the ability to discern between 12 different classes of object
in a glovebox, even when the objects have little or no surface
texture and high specular reflectivity [10]. The code used to
produce the results in their paper is currently used for object
detection at NRG.

Once objects have been located, the next step is to gener-
ate motion plans and grasp strategies for manipulators. Horn
and Sharp have developed a motion plan scoring system that
randomly samples valid plans and executes the highest scor-
ing plan based on learned user preferences. Brabec created a
shape-primitive-based grasping strategy that generates valid
grasp points on objects through visual data [11]]. Both of these
approaches have been tested in confined, hazardous environ-
ments successfully.

TASK OVERVIEW

We wish to sort objects of three different colors: red,
green and blue. The objects vary in shape and size, e.g., pieces
of hook-and-loop fastener, machine parts, and wooden blocks.
The objects begin in randomized positions on the glovebox
floor, and the number of objects in each color category can
range from O to 5, for a maximum of 15 objects. The scene

Containers

Camera

Gripper

Fig. 1. Above: top view diagram of the major components
of the glovebox automation system. Below: The inside
workspace of the glovebox from the camera’s viewpoint.

also includes three containers, one for each color of object
(Refer to Figure

To simulate an actual glovebox manipulation task as
closely as possible, the experiment was performed in NRG’s
cold glovebox, with windows and gloves installed. The floor of
the glovebox has brightly-colored tape marking out distances
(see Figure

IRAD’s design includes an Agile Planet controller for the
SIAS, as well as a Windows PC which communicates with the
controller, allowing for manual or automated operation. In ad-
dition, our experimental setup uses an Ubuntu 14.04 machine
for automating commands to the various system components.

By building the glovebox automation system out of many
self-contained components, we have constructed a system that
is flexible to different tasks and constraints. For example, we
could install one arm in an upper gloveport and one in a lower
gloveport (perhaps each with different end effectors) and move
the camera to the opposite window, then recalibrate, and the
system would be prepared to work on a different task.

SOFTWARE COMPONENTS

A system capable of autonomous sorting requires many
complex components. While the top-level components of our
system were developed at NRG, we list the underlying systems
here for completeness.

System framework: Our main Ubuntu machine uses
Robot Operating System (ROS) to orchestrate the many com-
ponents of the experiment. ROS handles multithreading auto-
matically for this complex application, and also provides the
RViz visualization environment, which is the main operator
interface for the demo. IRAD’s controller commands the SIAS
as dictated by a dedicated Windows machine, which does not



run ROS. To allow the SIAS to be controlled via ROS, we use a
driver developed in-house that passes commands between the
Ubuntu and Windows machines. We have recently extended
this driver to allow both joint trajectory execution and simple
directional jogging.

Motion planning: The ROS package Movelt! plans mo-
tion trajectories for the manipulator using various motion plan-
ners included in the Open Motion Planning Library (OMPL)
[12]. Different planners in Movelt! produced varying results,
and the best compromise between planning speed and result-
ing path quality was the RRTConnect planner [13]], which uses
rapidly-exploring random trees to generate motion paths.

Image Processing: We use three off-the-shelf libraries
for computer vision. OpenNI2 acquires 3D image data from
the Xtion sensor. Our custom vision library (see below) heav-
ily utilizes Point Cloud Library (PCL) for 3D analysis and
OpenCV for color analysis and histogram characterization.

Perception: For this experiment, we have extended our
Object Recognition and Pose (ORP) library to discern between
small colored objects. As in previous work [10], we perform
various methods of filtering to the incoming 3D point clouds:
voxel subsampling, spatial clipping, RANSAC plane removal,
and Euclidean clustering convert the clouds from full scenes
to clusters representing the individual objects on the glovebox
floor. In previous ORP applications, we would then run a point
cloud-based classifier on the data, but in this case we copy
the point clouds into OpenCV objects. Then, using OpenCYV,
a new classifier developed specifically for this application
generates a red/green/blue (RGB) histogram by summing the
red, green and blue values of each point in the cloud. Finally,
the strongest histogram channel is returned as the object’s
color classification.

By looking only at color information, we reduce the num-
ber of object classes to three, which raises the question of
why complex 3D point cloud processing is necessary. With-
out point clouds, our OpenCV algorithm would not be able
to distinguish between green tape on the glovebox floor and
a green cube, but by removing the floor using 3D analysis,
we can greatly improve the robustness of our (extremely fast)
color detection technique. We also use the 3D point clouds
to determine the 6DOF position of the object, reducing the
amount of uncertainty and making manipulation easier.

Grasping: The installed Robotiq gripper includes its own
ROS packages, but the library often exhibits unexpected be-
havior, making it unsafe to command directly. For example,
sending an "open" command to the gripper before it has been
activated causes the the activation procedure to execute, which
depending on the robot configuration can result in collisions
between the robot and the environment. To allow easier con-
trol and safer execution, we wrote a library that wraps the
gripper’s low-level inputs and outputs, handles activation in-
telligently, and provides easy access to its fault states. We also
make use of our previously-developed custom RViz plugin for
the Robotiq, which provides more accurate position feedback
for visualizing the gripper.

Task Execution

The execution loop is the final software component of the
experiment. Thanks to the number of self-contained libraries,
modules, and small improvements we have made to our sys-
tem, the main loop is straightforward, while still resulting in
complex behavior during the demo. Pseudocode for the main
application is shown below. Even with verbose formatting, the
main application is under 400 lines of code.

1 |detect objects

2 |classify objects

3 |while(object list is not empty):

4 try

5 move over object

6 grasp object

7 verify grasp

8 lift object

9 move over appropriate receptacle
10 release object
11 remove object from list //success, next
12 catch
13 if(object grasped):
14 put object back
15 remove object from list //failure, skip
16 move to home

17 wait for user confirmation

18 |end

Lines 1 and 2 trigger an object recognition loop in ORP
(see above). The loop runs for a short time to filter noise and
get a good representation of the scene, then returns the list of
objects in the scene along with their classification (red, green,
or blue).

The loop beginning at line 3 goes through the objects
one by one, and attempts to sort them into containers. Lines
5-10 primarily use ROS and Movelt!, along with our custom
gripper libraries, to perform the robot motion. Note that these
liens could easily be combined into a single instruction if a
mid-level task framework was created. After sorting an object,
the robot gets out of the operator’s way (line 16) so that they
can inspect the workspace before proceeding.

Asking the user for confirmation between each sort (line
17) is only one layer of a multilevel security architecture built
into the application. Because the system is so complex, it can
fail in many ways. Some examples are: failure to create a valid
motion plan, cable disconnection during robot motion, robot
joint speed violation, and a missed grab. We built 6 levels of
safety into the application, ordered here from least to most
autonomy:

1. Emergency stop: at any time, the user can trigger a hard
emergency stop, stopping all hardware immediately.

2. Software stop: at any time, the user can trigger a "soft"
stop to either the Windows machine (stopping the phys-
ical robot), or the Ubuntu machine (stopping the entire
application).



3. Operator confirmation: Before beginning the task, and
after each object is sorted, the user is prompted for con-
firmation before continuing. Note that this safety layer
can be disabled to allow autonomous sorting.

4. Joint torque limiting: the robot’s controller automatically
shuts off and locks the arm’s servos if it detects a motor
torque above a certain threshold.

5. Grasp validation: by monitoring the joint positions of the
gripper, we are able to detect an invalid or missed grasp
(line 7) and react accordingly, elevating to level 4.

6. Intelligent object skip: if object sorting should fail for
any reason (usually unable to generate a robot motion
plan), the object is first returned to its original location
if it had been moved. Because the system has encounted
a problem of some type while sorting this object, it is
assumed to be a difficult-to-manipulate object, because of
its location or otherwise, and is not revisited for sorting
unless the user specifically requests it.

RESULTS

The system described in the previous section success-
fully ran multiple times per week over a period of 3 months.
The strength of the system lies in the large codebase of self-
contained components, which allows the main application
code to be simple and generic. One can easily parse the pseu-
docode above with a different task in mind, e.g. packing
different-sized objects into containers to minimize wasted
space, sorting objects by their radiation signature instead of by
their visual color, or sorting objects based on weight or other
physical features. By abstracting the task as much as possible
and changing out the various components, the application be-
comes a model for executing other glovebox tasks safely and
reliably with a multitude of applications.

The histogram-based color analysis was 100% accurate,
even when classifying objects that had specular reflections,
that lied in shadow, or that were not entirely one color (see
Figure

‘We observed 4 failure modes, which can be attributed to
two issues with the underlying design: the calibration and the
motion planner. The failure modes were:

o Failure to generate a plan

Generated plan includes a collision with the environment

Unplanned collision with environment

Missed grab

The RRTConnect planner would often fail to produce a
plan in the 5 seconds allotted to it. Increasing the timeout
would result in more planning success, but the resulting plans
would be complicated and involve unnecessary motions. But
despite this shortcoming, the system still was able to sort the
vast majority of objects, and if a plan failed, it often succeeded
upon retrying because of the randomness of the path planner.
The other more dangerous failure mode associated with the

Fig. 2. Some of the objects sorted, all of which were correctly
classified using histogram analysis.

planner was when a motion path would cause a collision be-
tween the robot and the environment. This failure was caused
by the planner not performing high-fidelity collision checking,
and could be mostly mitigated by increasing the thickness of
the 3D models in the virtual collision scene.

Calibration issues accounted for the rest of the failures.
Imperfect mounting solutions for the 3D camera often resulted
in misalignment between the visual information and the virtual
representation of the scene, causing missed grabs and envi-
ronment collisions. For missed grabs, our safety architecture
allowed the system to immediately recover and skip to the next
object, with an option to return to the missed object in the fu-
ture. In the case of environment collision, operator emergency
stop was required, followed by correcting the calibration issue.

CONCLUSIONS AND FUTURE WORK

In this paper we showed the need for reliable and safe
flexible in-glovebox manipulation, and demonstrated our ap-
proach to implementing one such system. Our system com-
bines commercial hardware, open-source software, and cus-
tom solutions to integrate dynamic robotic manipulation into a
useful framework. In addition, we added libraries to increase
modularity and safety architectures to decrease operation risk.
We explored several different components to include in the
framework, and built a multi-layer set of safety checks. We
have proven our system’s viability by completing a color-cube
sorting task reliably and safely, and demonstrated that the
main application logic is generic and simple to understand.
We have also proven our system’s ability to adapt to different
tasks and needs by exploring several different planners that
require minimal changes to the system.

Future plans include adding improvements to the applica-
tion code and supporting components to improve interoperabil-
ity. As mentioned previously, many parts of our application
were developed in parallel by NRG researchers, and as a result,
active research is progressing on various application compo-
nents. Future improvements to the ORP library will allow
us to sort objects by multiple modes, such as shape [10] and
radiation signatures. NRG is also working to improve motion
planning using machine learning. Finally, NRG is currently
testing a framework for custom force control, allowing com-
plex moves such as peg-in-hole or surface following. We
plan to use this framework to develop more complex actions,



such as placing samples in precise locations, or using special
end-effectors to turn bolts and screws.

In addition to incorporating new work from other re-
searchers, we will continue to iterate our system’s design
and generalize to more applications, including corobotics
(human-robot interaction), bin packing, and interacting with
centrifuges, valves, and other small devices in a glovebox.
These changes will increase the level of autonomy for tasks
completed in glovebox environments.

ACKNOWLEDGMENTS

This material is based upon work supported by Depart-
ment of Energy Nuclear Energy University Programs Graduate
Fellowships.

REFERENCES

1. TAEA, “Retrieval and Conditioning of Solid Radioactive
Waste From Old Facilities,” Tech. Rep. 456, International
Atomic Energy Agency (2007).

2. TAEA, “Minimization and segregation of radioactive
wastes,” Tech. Rep. 652, International Atomic Energy
Agency (1992).

3. J. HERNDON ET AL., “The State-of-the-Art Model M-2
Maintenance System,” in “proceedings of the National
Topical Meeting on Robotics and Remote Handling in
Hostile Environments,” (1984).

4. C. BRABEC ET AL., “Reducing the Operator’s Burden
During Teleoperations Involving Contact Tasks,” in “3rd
Int. Joint Topical Meeting on Emergency Preparedness
and Response and Robotics and Remote Systems 2011,
EPRRSD, and 13th Robotics and Remote Systems for
Hazardous Environments,” (2011).

5. V.ORTENZI ET AL., “Projected Inverse Dynamics Con-
trol and Optimal Control for Robots in Contact with the
Environment: A Comparison,” 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems IROS
(September 2015).

6. C. M. FRAZEE and M. E. BRENNAN, “HANDSS-55: A
TRU Waste Repackaging System for the Savannah River
Site,” in “proceedings of the 2001 Waste Management
Conference,” (2001).

7. R. SMITH, “Helping HANDSS for Sorting Waste,” Rad-
waste Solutions, 9, 6, 47-52 (November/December
2002), www . ans .org/pubs/magazines/download/a_
215 Accessed 1/8/2016.

8. T. E. SAMPSON and T. L. CREMERS, “Integrated Non-
destructive Assay Solutions for Plutonium Measurement
Problems of the 21st Century,” Tech. rep., Los Alamos
National Laboratory (1997).

9. “romans,” http://www.h2020romans.eu/, accessed:
Accessed 1/1/2015.

10. A. ALLEVATO ET AL., “Using a Depth Camera for Ob-
ject Classification in Nuclear Gloveboxes,” in “American
Nuclear Society Student Conference,” (2015).

11. C. L. BRABEC, “A shape primitive-based grasping strat-
egy using visual object recognition in confined, hazardous
environments,” (2013).

12. I. A. SUCAN ET AL., “The Open Motion Planning Li-
brary,” IEEE Robotics & Automation Magazine, 19, 4, 72—
82 (December 2012), http://ompl.kavrakilab.org
Accessed 1/8/2016.

13. J. KUFFNER and S. LAVALLE, “RRT-connect: An
efficient approach to single-query path planning,” in
“Robotics and Automation, 2000. Proceedings. ICRA ’00.
IEEE International Conference on,” (2000), vol. 2, pp.
995-1001 vol.2.


www.ans.org/pubs/magazines/download/a_215
www.ans.org/pubs/magazines/download/a_215
http://www.h2020romans.eu/
http://ompl.kavrakilab.org

	Introduction
	Related Work
	Task Overview
	Software Components
	Task Execution

	Results
	Conclusions and Future Work
	Acknowledgments

