Characterizing Glovebox Automation Tasks using Partially Observable Markov Decision Processes

Adam Allevato and Mitch Pryor

Nuclear and Applied Robotics Group, The University of Texas at Austin, 10100 Burnet Rd, Austin, Texas 78758, USA
allevato @utexas.edu, mpryor@utexas.edu

INTRODUCTION

As robots become more prevalent in everyday life, com-
panies are implementing new hardware and software systems
that provide improved human-robot interaction, but at the ex-
pense of reduced reliability and performance. These service
robots tolerate of some level of uncertainty, as long as they can
complete their tasks satisfactorily. But in the industrial-nuclear
complex, such uncertainty can literally be fatal. Customers
such as the Department of Energy desire 100% accuracy and
repeatability of our nuclear robotic systems to ensure safe task
execution.

Before deploying a robot into a nuclear environment, the
robot should be validated and verified to ensure that it will per-
form according to its requirements with as high a probability
as possible. To quantify the performance of a robotic system
(which is inherently probabilistic and uncertain because of
sensor inaccuracies), we look to the field of cyberphysical sys-
tem verification (hereafter referred to as system verification).
By using techniques from pure mathematics and formal logic,
system verification can evaluate a system, and, under certain
assumptions, guarantee the correct execution of a system ac-
cording to some specification.

In this work we wish to prove the execution correctness of
an unspecified radiochemistry manipulation task that will take
place in a glovebox. By analyzing a purposely generalized
task, we can show that system verification is applicable across
a wide domain, then use the technique to verify solutions to
specific problems. Our system setup includes an environment
that has an inherent state, sensors which produce an observa-
tion from the environment, and a robotic system that can take
specific actions, which may lead to a variety of different envi-
ronment states (due to inherent uncertainty). Together, these
three concepts (state, sensors, and actions) are well represented
by a Partially Observable Markov Decision Process (POMDP),
especially for scientific applications, including autonomous
robots in hazardous environments [[1]. We use POMDP system
verification tools to generate a provably correct strategy for
our robotic system, allowing it to select the correct series of
actions (based only on sensor inputs and internal memory) to
reach the goal state, completing the task.

RELATED WORK

The idea of remotely handling radioactive material is
not new. In the 1940s, locations such as Idaho National Lab
developed cable-driven remote manipulators, allowing a ma-
nipulator in a hot cell to "puppet"” an operator using a complex
mechanical system [2]]. In 1984, cable-driven master-slave
configurations were still the current state of the art, being
deployed at Oak Ridge National Laboratory (ORNL) [3].

In more recent years, the Advanced Recovery and Inte-

gration Extraction System (ARIES) system has been deployed
at Los Alamos National Laboratory (LANL) to automate the
process of dismantling nuclear weapons [4]. ARIES employs
several automation tools and robots, including two Fanuc LR
Mate 100i manipulators.

The ARIES system has been successful in carrying out
extremely well-defined tasks and procedures, and its creators
even write "robots will soon be appearing in a glovebox near
you" [5]], but open-ended or one-off tasks require more ver-
satile systems that are still robust. Labs such as LANL have
been slow to adopt the idea of robotics in gloveboxes, partially
because of the lack of guarantees on task execution.

UT Austin’s Nuclear and Applied Robotics Group (NRG)
is helping expand glovebox automation capabilities by show-
ing proof-of-concept of various tasks inside gloveboxes. The
lab has demonstrated force control [6]], safety architectures
[[7], and vision-based detection and classification [8§]], all in
support of robotic glovebox procedures. This research looks
at the higher-level task planning required for such procedures.

Kaelbling et al. [9]] point out that POMDPs are only well-
suited to problems with finite state spaces, making them a
poor tool for visual recognition and pose detection. However,
assuming that 6DOF pose detection and grasping can be com-
pleted via traditional means, POMDPs can produce high-level
plans for task completion in a safe, effective manner, even in
the presence of uncertainty.

APPROACH

We first provide an overview of POMDPs and system
strategies. Then, we describe the general radiochemistry task
and details of the system, actions, uncertainties, and environ-
ment states. Finally, we present the software-based approach
used to characterize the system and generate a strategy.

Partially Observable Markov Decision Processes

A POMDP is defined formally by a tuple of six values,
(S, A,T,R,0,0) [10].

e S is the finite set of states the environment may be in,
and represents the actual state, not the value estimated by
the system.

e A is the finite set of actions that the system may take.

e 7 is the state transition model, which characterizes how
the system moves from state to state as various actions are
taken by the system, encoding a probability distribution
over the set S X A. For each action a € A, the probability
of transitioning from state s to s’ is encoded as 7 (s, a, s”).

e R: S8 XA — Ris the reward function, which provides
real-valued rewards to the system for taking actions while

the environment is in a specific state. A successful execu-
tion strategy will seek to maximize the system’s reward,
either in the short-term or in the long-term.

e O is the finite set of observations. The system has a
way of sensing its environment, and O enumerates the
possible sensor responses. The number of observations
is usually less than the number of environmental states,
which means that multiple different states may produce
the same observations. Since the system must rely only
on its sensors’ observations, and the observations can be
ambiguous, the system has incomplete knowledge of the
environment state during execution. This limited state
awareness is what produces the "partial observability" of
a POMDP.

e O is the observation function, which provides a unique
probability distribution over O for each value of S X
A. In other words, O represents the multiple different
observations that may be observed for each state/action
pair.

Some authors define a POMDP using an additional reward
function, R, and seek to develop systems that will maximize
the total reward over time [11]], [12]. This definition is not
useful for our discussion, because it implies that the system
can succeed to varying degrees. We consider our system to
have only two possible outcomes: success and failure, and so
we do not use the reward function and restrict ourselves to a
standard POMDP definition.

System Modeling

The system to be modeled is that of a robotic manipula-
tor inside an enclosed environment that includes a stationary
visual sensor. The manipulator can pick up objects from an
entrance point and place them at various locations inside the
environment, but other than this, the environment remains sta-
tionary. The visual sensor is located in a position where it can
view the entrance point to detect and classify new environment
objects, but cannot detect objects after the manipulator has
moved them. By keeping the system purposely high-level,
the analysis procedure can apply to specific systems easily.
As an example, this representation can model an industrial
manipulator deployed in a glovebox transfer port. NRG has de-
veloped a system of this type (Fig. 1), consisting of a Yaskawa
Motoman SIAS5 7-DOF serial manipulator, Robotiq 3-finger
gripper, and Asus Xtion Pro RGB/depth camera, all mounted
to a lead-lined glovebox with 4 square meters of work surface.

The robot (with attached gripper) is deployed through
a transfer port using NRG’s custom mounting stand ([13]))
for convenience, but it could also be deployed through one
of the smaller glove ports. The Xtion Pro camera mounts to
the outside of the glovebox behind a layer of leaded glass,
providing a view of approximately 60% EI of the glovebox
work surface (including the second transfer port) while also
protecting the image sensor. As mentioned above, NRG has

' Adding more cameras to the system could provide a full view of the
glovebox workspace, but this was unnecessary for our task.

Fig. 1. Above: The transfer port-deployed SIAS at NRG. This
picture was taken from the approximate position of the depth
camera mounted on the glovebox. Below: the robot performs
a pick and place task.

already performed a number of vision-based manipulation
tasks using this and similar systems (see Figure[I)), so this
already validated system is an ideal platform for the concepts
in this paper.

Once the system has been modeled, the next step is to
describe the task. The glovebox work area begins empty, and
items will enter the glovebox through the transfer port. The
operator will add items to the glovebox one at a time, from
a set of three objects: Container Type A, Container Type B,
and Sample. The vision system will automatically detect and
classify the new object, then take the appropriate action, with
the end goal being to place a sample, which is assumed to be
radioactive, inside a container without ever placing the sample
directly on the work surface. The vision system is unable to
discern between Container Type A and Container Type B, and
the sample can be placed into either type of container. After
each object is added to the glovebox, the system can a) request
a different object be put in the transfer port, b) pick/place a
container from the transfer port, or c) pick/place a sample from
the transfer port. Attempting to pick the wrong type of object
from the transfer port will result in a system error.

This task is purposely general to prove the concept of
system verification for many procedures, but the task includes
important parts of a POMDP, as will be seen.

After the task has been defined, the system, environ-
ment, and actions map to a POMDP as follows. The set
of states is the combination of all possible glovebox states
(empty, Container A in place, Container B in place, Con-

tainer A & B in place, sample placed in container) with
all possible entry states (Container A in transfer port, Con-
tainer B in transfer port, sample in transfer port). An
additional state, err, represents an unrecoverable system
fault, or failure. The system’s actions are a direct map
to the three actions listed above: request_new_item,
move_container, or move_sample. The observations are
container_in_transfer, sample_in_transfer, and er-
ror (we assume that the system is able to detect when it
reaches an error state). The observation mapping func-
tion assumes a perfect sensor, with the exception of the
inability to discern between different types of container.
All states that have a container in the transfer port pro-
duce the container_in_transfer observation, and all
states that have a sample in the transfer port produce
sample_in_transfer.

The set of goal states for the environment is the set of all
states where a sample has been moved into the glovebox after
a container has already been moved into the glovebox. The
system halts execution after this state is reached because the
task is complete.

The "solution" to a POMDP is a strategy S : M,S —
M, A, which works similarly to a finite state machine. The
strategy will select an action a € A based on the current
state s € S and some memory value m € M. The memory
value can be thought of as an internal state associated with
the agent implementing the strategy. Using m, a strategy can
make informed decisions about what action to take based on
its past experience. Take the example of a robot in a maze.
After choosing a path from an intersection, the robot updates
its internal memory m to "remember" that it has taken a path.
The next time the robot encounters the same intersection, it
can refer its memory to avoid revisiting the same path. In our
implementation, m is updated after every action, so the system
is able to keep track of its path through the state space in search
of the goal state. The memory value m need not be an explicit
listing of previous actions, it can simply be an integer value

TABLE I. The winning strategy for the glovebox manipulation
task. Based on the current memory state (m src) and observa-
tion (obs) in each step, the system will choose a line, take the
corresponding action, and change the internal memory state
to the associated m dest.

line | msrc | obs | action m dest
1 1 o_a | request_item_change | 2

2 1 o_b | request_item_change | 3

3 1 o_s | request_item_change | 4

55 12 o_a | request_item_change | 13

56 12 o_f | place_sample 14

57 13 o_b | request_item_change | 11

58 13 o_s | request_item_change | 12

59 13 o_a | request_item_change | 13

63 14 o_f | place_sample 14

that the strategy understands, and it can be defined differently
for different strategies. Because of this, M is only useful in
the context of a specific strategy, and is not part of the POMDP
definition.

Performing system verification on our POMDP will find a
winning strategy, if one exists. A winning strategy will almost
surely satisfy the requirements. "Almost surely” refers to the
formal probabilistic concept of probability 1, or that there are
a finite number of cases where the strategy will fail to reach
the goal. However, since this finite number of failure cases are
part of an infinite solution space, and all the other (infinite)
solutions result in success, the strategy will always succeed
when implemented in a real-world system.

POMDPs with Parity Objectives Solver (PPS) [[14] was
used to generate a winning strategy from our POMDP. PPS
is a Java program that reads POMDPs using a special script
syntax. The program takes as inputs states, observations, and
a transition model which have been explicitly defined in a file,
then finds a finite-memory winning strategy (or informs the
user that such a strategy does not exist).

To use PPS, the strategy’s goal must be defined in terms
of a parity automaton, which is a state transition system where
each state is assigned a nonnegative number. PPS’s winning
strategy ensures that the lowest-numbered state that repeats
infinitely often has an even number. This parity objective is
easier to solve than an arbitrary formal logic formula or other
ways of expressing a goal. To convert our goal states into a
parity objective, we take the manual approach as described
in [10]: we simply assign the set of goal states to have parity
0 (even), and all other states to have parity 1 (odd). The
winning strategy will revisit even-numbered (i.e. goal) states
infinitely many times, ensuring that the system completes the
manipulation task as desired. Once the system reaches an
error state, the only transitions that can occur (no matter what
actions are taken) lead to the same error state, so a path that
visits an error state will stay there forever, and will never
reach a goal state. The winning strategy must revisit an even-
numbered (goal) state infinitely many times, so it will be
designed to never get "stuck” in an error state.

RESULTS

PPS generated the results quickly for this 17-state, 51-
transition system, producing a winning strategy in approxi-
mately 0.1 seconds ﬂ The software returns a strategy in the
form of a mapping between memory states, observations, and
actions. Each entry in the strategy tells the system which ac-
tion to take for each possible combination of system memory
and observation. Because the various memory values define
different internal states, the system can take different actions
based on previous parts of the execution. A truncated version
of the strategy is shown below in Table[l]

The system begins with internal memory M = 1. In
this state, the system can observe one of three actions: o_a,
o_b, or o_s. These three possibilities map to lines 1, 2, and
3 of Table[ll Based on the observation from the sensors, the
system will take an action—in this case, it will always per-

2The machine used to run PPS was a Windows 10 machine with a 4th-
generation Intel i7 and 16GB of RAM

form request_item_change— and then update the internal
memory state to 2, 3, or 4.

Solution Technique

On line 59, the system will repeatedly ask the opera-
tor for a different item (action request_item_change until
something besides a Container Type A is observed (o_a). Pre-
sumably, this represents a memory state where accepting a
Type A container would cause a system fault. The memory-
observation-action mapping is powerful enough to encode the
logic required, including loops, to complete the task effectively
without ever reaching an error state.

In line 56 of the strategy, the system observes that it has
completed its task (the observation is o_f, so it goes to state
14 (line 63), which loops infinitely. The run is complete. In
this strategy file, every run will eventually lead to o_f£, and
will never get stuck in a fault state.

In general, the winning strategy is intuitive. It continues to
ask the operator for a new item until it detects a container, then
moves the container into the glovebox. If containers continue
to be inserted, it will handle them appropriately (rejecting
or moving) until a sample is inserted, at which time it will
put the sample into one of the previously-loaded containers.

Fig. 2. A simplified representation of the winning strategy.
Actions and memory states are not shown in this graph. Each
node represents an environment state; for example, "a" means
that a Type A Container has been placed into the environment.
Arrows represent transitions caused by each object that could
be placed in the transfer port. The goal is to place the sample
("s") after placing one or both containers, which results in an

observation of o_f, or "task finished."

This straightforward strategy becomes quite complex using the
memory-observation-action syntax, as shown by the amount of
reasoning required when reading the strategy line by line. PPS
generates a graph of states, observations and actions, but this
graph has 29 internal memory states, and so is too complex to
be helpful. A simplified version is shown in Figure[2]

As complex as this strategy becomes using the memory-
action form, it could most likely have been coded by hand
using basic loops and logic, because of the simplicity of the
problem. However, even for this simple system, a hard-coded
solution would have no guarantee of proper execution, and
it could get "stuck" or exhibit unexpected behavior. More
complex tasks will only exacerbate the problem, emphasizing
the need for automatic strategy generation.

It is important to note that the POMDP-generated model
provides a viable alternative to either finite state machines
or goal-oriented action programming (GOAP) [15]], both of
which have been used by NRG in the past. The method in
this paper has the advantage of being machine-generated and
provably correct, so it does not have any unexpected states
that could trip up the system because of inadequate planning.
However, this blessing is also a curse, in that it is very difficult
for a human to reason out the system’s behavior by looking
at the strategy. In addition, system verification is only valid
if the original assumptions on system behavior hold. If, for
example, an action’s possible outcomes change because of
unexpected changes to the environment, the system may not
perform perfectly. Although the system and environment may
arrive at the goal state, there are no guarantees.

CONCLUSIONS AND FUTURE WORK

Applying cyberphysical system verification to a robot
manipulation problem presents unique challenges, but also
unique results. POMDP solvers allow the development of a
provably-correct almost-sure winning strategy to satisfy a par-
ity objective. By converting a definition of a basic glovebox
manipulation task to a POMDP/parity objective pair, software
can provide strong guarantees of the completion of the task.
The strategy is robust to incomplete sensor information and
partially unknown state transition models, providing the cor-
rect system action to take for each possible sensor observation.
By generating strategies automatically for manipulation tasks,
we achieve greater robustness, safety, and confidence in our
manipulation system’s performance.

The next step for this research is to implement the strategy
on a physical hardware system, such as the port-deployed
manipulator at NRG.

Simple automated tools would speed up development of
future POMDPs and associated strategies. As mentioned, the
syntax used to define POMDPs requires explicit definition of
all states, observations, and transition probabilities. For large
POMDPs, the definition file grows exponentially in size. A
script to automatically generate definition files for large pro-
cesses would greatly ease the development of new strategies.
Once a script has been developed, additional proof of con-
cept for POMDP-based verification would include generating
strategies for a number of common glovebox tasks, such as
sampling, counting, sorting, or packing. Finally, the generated

strategies could be integrated into hardware platforms at NRG
or elsewhere.

ACKNOWLEDGMENTS

The authors would like to thank Krishnendu Chatterjee,
Martin Chmelik, Raghav Gupta, and Ayush Kanodia for the
development of the PPS tool, and Ufuk Topcu for his guidance
regarding cyberphysical system verification.

This material is based upon work supported by a Depart-
ment of Energy Nuclear Energy University Programs Graduate
Fellowship.

REFERENCES

1. A. R. CASSANDRA, “A survey of POMDP applications,”
in “Working Notes of AAAI 1998 Fall Symposium on
Planning with Partially Observable Markov Decision Pro-
cesses,” (1998), vol. 1724.

2. “CRL Central Research Laboratories | DE-
STA-CO,” http://web.archive.org/web/
20151208150328/http://www.destaco.com/
crl-products-equipment.html, accessed: 2016-01-
05.

3. J. N. HERNDON ET AL., “The state-of-the-art model
M-2 maintenance system,” in “presented at the American
Nuclear Society Topical Meeting on Robotics and Remote
Handling in Hostile Environments,” (April 1984).

4. C.TURNER and J. LLOYD, “Automating ARIES,” LANL
Actinide Research Quarterly, pp. 32-35 (April 2008).

5. P. C. PITTMAN ET AL., “Automation of the LANL
ARIES lathe glovebox,” in “The American Nuclear So-
ciety Ninth Topical Meeting on Robotics and Remote
Systems,” (2001).

6. B. O’NEIL ET AL., “Hazardous workspace modeling for
manipulators using spatial hazard functions,” in “Safety,
Security, and Rescue Robotics (SSRR),” (November
2012).

7. A. ALLEVATO ET AL., “Using a depth camera for ob-
ject classification in nuclear gloveboxes,” in “American
Nuclear Society Student Conference,” (April 2015).

8. B. O’NEIL, Object Recognition and Pose Estimation for
Manipulation in Nuclear Materials Handling Applica-
tions, Ph.D. thesis, The University of Texas at Austin
(2013).

9. L. KAELBLING ET AL., “Planning and acting in par-
tially observable stochastic domains,” Artificial Intelli-
gence, pp. 99-134 (1998).

10. K. CHATTERIEE ET AL., PPS: User Manual (2015),
accessed 2016-01-06.

11. D. BRAZIUNAS and C. BOUTILIER, Stochastic lo-
cal search for POMDP controllers, National Library of
Canada= Bibliotheque nationale du Canada (2004).

12. A.Y.NG and M. JORDAN, “PEGASUS: A Policy Search
Method for Large MDPs and POMDPs,” in “Proceed-
ings of the Sixteenth Conference on Uncertainty in Artifi-
cial Intelligence,” Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (2000), UAT’ 00, pp. 406-415.

13. J. A. HASHEM, “Integrating fixed and flexible solutions

14.

15.

for glovebox automation,” Tech. Rep. LA-UR-11-04457
(Jul 2011).

K. CHATTERIJEE ET AL., “What is Decidable about Par-
tially Observable Markov Decision Processes with omega-
Regular Objectives,” in S. R. D. ROCCA, editor, “Com-
puter Science Logic 2013 (CSL 2013),” Schloss Dagstuhl—
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2013), Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 23, pp. 165-180.

J. ORKIN, “Symbolic representation of game world state:
Toward real-time planning in games,” in “Proceedings of
the AAAI Workshop on Challenges in Game Artificial
Intelligence,” (2004), vol. 5.

http://web.archive.org/web/20151208150328/http://www.destaco.com/crl-products-equipment.html
http://web.archive.org/web/20151208150328/http://www.destaco.com/crl-products-equipment.html
http://web.archive.org/web/20151208150328/http://www.destaco.com/crl-products-equipment.html

	Introduction
	Related Work
	Approach
	Partially Observable Markov Decision Processes
	System Modeling

	Results
	Solution Technique

	Conclusions and Future Work
	Acknowledgments

